scholarly journals Wear Behavior of Borided Cold-Rolled High Manganese Steel

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1207
Author(s):  
Fatih Hayat ◽  
Cihangir Tevfik Sezgin

In this study, a novel high-manganese steel (HMS) was borided at 850, 900 and 950 °C for 2, 4, and 6 h by the pack boriding process. Contrary to previous literature, borided HMS uncommonly exhibited saw-tooth morphology like low alloy steels, and manganese enhanced the boron diffusion. Another striking analysis is that the “egg-shell effect” did not occur. The present study demonstrated the silicon-rich zone for the first time in the literature by EDX mapping. Moreover, the formation mechanism of silicon-rich zones was explained and termed as “compact transfer of silicones (CTS)”. XRD analysis showed the existence of FeB, Fe2B, MnB and SiC phases. The boriding time and temperature increased the thickness of the boride layer from 31.41 μm to 117.65 µm. The hardness of the borided layer ranged from 1120 to 1915 HV0.05. The activation energy of borided HMS was found to be a very low result compared to high alloy steel investigated in the literature. The Daimler-Benz Rockwell-C adhesion test showed that adhesions of borided HMS surfaces are sufficient. The dry sliding wear tests showed that boriding treatment increased the wear resistance of untreated HMS by 5 times. The present study revealed that the boriding process extended the service life of HMS components.

2012 ◽  
Vol 557-559 ◽  
pp. 232-235 ◽  
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Shu Yong Jiang ◽  
Hong Cheng

High manganese matrix composite, reinforced by TiC particles, was synthesized in situ by means of conventional powder metallurgy route. The microstructure was investigated by means of Scanning electron microscopy. Pin-on-disc dry sliding wear tests had been carried out to study the wear behavior of TiC-reinforced high manganese steel matrix composites. The results show that TiC carbides are distributed uniformly in the composite. The abrasive wear resistance of the composites is higher than that of the unreinforced high manganese steel.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Jian Wang ◽  
Qingliang Wang ◽  
Xiao Zhang ◽  
Dekun Zhang

The coupled impact and rolling wear behavior of the medium-manganese austenitic steel (Mn8) were studied by comparison with the traditional Hadfield (Mn13) steel. Scanning electron microscopy (SEM), X-ray diffractometer (XRD), and transmission electron microscope (TEM) were used to analyze the wear and hardening mechanisms. The experimental results show that the impact and rolling wear resistance of hot-rolled medium-manganese steel (Mn8) is better than that of high-manganese steel (Mn13) under conditions of low-impact load. The better work hardening sensitivity effectively improves the wear resistance of medium-manganese steel. Not only the coefficient of friction is low, but the mass loss and wear rate of the wear are lower than that of high-manganese steel. After impact and rolling wear, a hardened layer with a thickness of about 600 μm is formed on the wear surface. The highest microhardness of the subsurface layer for Mn8 is about 594 HV and the corresponding Rockwell hardness is about 55 HRC, showing the remarkable work hardening effect. The wear-resistant strengthening mechanism of medium-manganese steel is compound strengthening, including the deformation-induced martensitic transformation, dislocation strengthening, and twin strengthening. In initial stages of impact and rolling abrasion, dislocation strengthening plays a major role. When the deformation reaches a certain extent, the deformation-induced martensitic transformation and twinning strengthening begin to play a leading role.


Author(s):  
Zhenghui Wang ◽  
Jingpei Xie ◽  
Qian Li ◽  
Wenyan Wang ◽  
Aiqin Wang ◽  
...  

2021 ◽  
Vol 89 ◽  
pp. 122-132
Author(s):  
Pan Xie ◽  
Shucheng Shen ◽  
Cuilan Wu ◽  
Jiehua Li ◽  
Jianghua Chen

2019 ◽  
Vol 44 (13) ◽  
pp. 7000-7013 ◽  
Author(s):  
Young-Hyun Nam ◽  
Jong-Seo Park ◽  
Un-Bong Baek ◽  
Jin-Yoo Suh ◽  
Seung-Hoon Nahm

2019 ◽  
Vol 37 ◽  
pp. 375-379
Author(s):  
Ke Zhu ◽  
Zhengbing Xu ◽  
Siyong Zhao ◽  
Jianmin Zeng

2010 ◽  
Vol 97-101 ◽  
pp. 1863-1866
Author(s):  
Liang Yang ◽  
Li Xu

Performance of tool has always been a puzzle in the course of high manganese steel drilling. In this paper, improvement of drill tool is been done on drill bit structure and parameters of cutting tip by means of analyzing geometric parameter. By utilizing simulation method correctly, the influence of bit parameter on drilling force is analyzed. Meanwhile, by adopting the way of dividing into groups, comparison experiment between improved and no improved has been done. The comparison analysis of test results is carried out including tool life, wear and drilling force. The conclusion showed that the improved bit has better performance.


2012 ◽  
Vol 535-537 ◽  
pp. 757-760
Author(s):  
Xiao Hua Sun ◽  
Chang Ming Qiu ◽  
Yan Feng Wang ◽  
Li Deng

High manganese steel is a wear-resisting steel. With the rapidly development of industry, it is very important to improve the wear resistance of high manganese steel. We do some experiments with cold asynchronous rolling technique on austenitic high manganese steel.The results show that hardness and impact abrasion resistance are enhanced greatly with the increase of deformation, and the toughness not decrease to very low.


Sign in / Sign up

Export Citation Format

Share Document