scholarly journals Synthesis of Gd2Zr2O7 Coatings Using the Novel Reactive PS-PVD Process

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1208
Author(s):  
Pawel Pędrak ◽  
Kamil Dychtoń ◽  
Marcin Drajewicz ◽  
Marek Góral

Ceramic topcoats of thermal barrier coatings (TBCs) make it possible to increase the working temperature of the hot sections of jet engines. Yttria-stabilized zirconia oxide (YSZ) is usually used to protect the turbine blades and vanes against high temperature and oxidation. It is necessary to develop new materials which can operate at higher temperatures in a highly oxidizing gas atmosphere. Re2Zr2O7-type pyrochlores are promising YSZ replacements. Usually, they are produced by mixing pure oxides in the calcination process at higher temperatures. In a recent article, the new concept of pyrochlore synthesis during the deposition process was presented. The new technology, called reactive plasma spray physical vapor deposition (reactive PS-PVD), was developed and a Gd2Zr2O7 (GZO) coating was achieved. The reactive PS-PVD process allowed for the use of a mixture of untreated ZrO2 and Gd2O3 powders as reactants, instead of the commercially available gadolinium zirconate powders used in other types of processes. The results of microstructure observations revealed a columnar microstructure in the produced ceramic layer. The phase composition indicated the presence of gadolinium zirconate. Thermal analysis showed a decrease in the thermal conductivity in the range of 700 to 1200 °C of the produced layers, as compared to the layer made of the currently used conventional YSZ.

2012 ◽  
Vol 1 (1) ◽  
pp. 46 ◽  
Author(s):  
Amir Mahyar Khorasani ◽  
Mohammad Reza Solymany yazdi ◽  
Mehdi Faraji ◽  
Alex Kootsookos

Thin-film coating plays a prominent role on the manufacture of many industrial devices. Coating can increase material performance due to the deposition process. Having adequate and precise model that can predict the hardness of PVD and CVD processes is so helpful for manufacturers and engineers to choose suitable parameters in order to obtain the best hardness and decreasing cost and time of industrial productions. This paper proposes the estimation of hardness of titanium thin-film layers as protective industrial tools by using multi-layer perceptron (MLP) neural network. Based on the experimental data that was obtained during the process of chemical vapor deposition (CVD) and physical vapor deposition (PVD), the modeling of the coating variables for predicting hardness of titanium thin-film layers, is performed. Then, the obtained results are experimentally verified and very accurate outcomes had been attained.


2018 ◽  
Vol 885 ◽  
pp. 56-63
Author(s):  
Markus Bambach ◽  
Irina Sizova ◽  
Aliakbar Emdadi

Metal forming processes may induce internal damage in the form of voids in the workpiece under unfavorable deformation conditions. Controlling the amount of damage induced by metal forming operations may increase service performance of the produced parts. Damage is crucial in high-performance components of limited workability such as jet engine turbine blades. Recent developments have introduced forged titanium aluminides into commercial jet engines. Titanium aluminides are lightweight intermetallic compounds with excellent creep properties but very limited ductility. Their low workability requires isothermal forging at slow strain rates, which is typically kept constant in the process. This work explores the possibility of increasing the ram speed during the process so that the process time is reduced while the amount of damage introduced into the workpiece is controlled. The results show that a 25% reduction in process time seems viable without increase in damage by solving an optimal control problem, in which the ram speed profile is determined off-line by minimization.


2014 ◽  
Vol 782 ◽  
pp. 578-583 ◽  
Author(s):  
Juraj Belan

The aerospace industry is one of the biggest consumers of advanced materials because of its unique combination of mechanical and physical properties and chemical stability. Highly alloyed stainless steel, titanium alloys and nickel based superalloys are mostly used for aerospace applications. The aim of the work is to evaluate protective Al Si coating applied by diffusion annealing on substrate, Ni base superalloy ZS6K. This superalloy is used for turbine blade production in aero jet engine DV 2. Using of protective alitize coating provides an increasing of heat resistance of superalloy surface and increases working temperature up to 800°C. However, overcrossing of working temperature range (for ZS6K turbine blades it is from 705°C to 750°C) sometimes happen and that is the reason for detailed study of protective coating degradation. The alitize coating were evaluated in starting stage and after various time of regular loading in real aero jet engines DV 2. Coating and its degradation was evaluated with help of quantitative metallography methods (metallography software NIS Elements) and colour contrast as well.


Author(s):  
Mohammed Shahien

Thermal spraying is a well-known coating technology with many variations in spraying techniques, feedstock materials and substrate materials. These unique variations increased its industrial applicability in different fields, including aerospace, automotive, chemical process, corrosion protection, and medical applications. However, one of the main limitations of thermal spray is the difficulty of depositing several nitride ceramics directly using conventional techniques. This is due to the decomposition of nitride particles under high temperature without a stable melting phase. This chapter presents reactive plasma spraying (RPS) technology as a promising solution for the in situ fabrication of several nitride ceramic coatings. The main attractive prospects of RPS for fabricating nitride coatings are specifically highlighted. Successful development of various high-temperature nitride coatings, such as AlN, Fe4N and Si3N4, are presented. Process optimization, the relationship between reaction and process parameters and the influence on coatings formation are comprehensively discussed.


Author(s):  
Bing Wang ◽  
David Paper

This case study documents an organizational change intervention concerning the implementation of a novel information technology at a university-owned research foundation (URF). It evidences the disparate expectations and reactions by key actors toward the change event, marking a mismatch between a new paradigm required by the new technology and existing information technology practices. Drawing upon change management and management information systems (MIS) literature, the authors discuss the perceived change management issues hindering the change process at URF. The discussion is tempered by a theoretical lens that attempts to integrate the literature bases drawn upon in this research. In particular, resistance from in-house IT specialists was observed as the strongest force obstructing the novel IT implementation. This study offers a forum to stimulate both researchers and practitioners to rethink the necessary elements required to enact change, especially with respect to novel IT implementations.


2013 ◽  
Vol 738 ◽  
pp. 141-144
Author(s):  
Guo Fang Kuang ◽  
Zhao Feng Sun

New building materials variety and yield is developing with hitherto unknown speed, construction engineering development if the effective use of new building materials will be excellent performance of new technology. Novel building materials can significantly reduce the weight of buildings, to promote the light construction structure created the conditions. IPv6 is not only a good solution to the problem of the lack of IP address, but also due to the introduction of encryption and authentication mechanisms to make it a better improvement in the network. The paper presents the novel model of building and energy engineering based on IPv6 technology. Experimental results show that the proposed method has high efficiency.


Author(s):  
Mark Van Roode ◽  
Kenneth G. Kubarych ◽  
Russell L. McCarron

The work described in this paper was conducted under Electric Power Research Institute (EPRI) Contract RP 2465, “Rainbow Test of Advanced Coatings for Gas Turbine Blades and Vanes”. A field test of a rainbow rotor and nozzle was carried out to establish the hot corrosion protection of various aluminide and MCrAlX (X = Y, Hf) overlay coatings on first stage blades and nozzles of a Centaur gas turbine operating in Valera, Venezuela. The blade coatings included both simple and precious metal aluminides, Electron Beam-Physical Vapor Deposition (EB-PVD) coatings and Low Pressure Plasma Spray (LPPS) coatings on Inconel-738LC, Inconel-792 and MAR-M421 substrates. The turbine nozzle vanes were coated by similar methods on FSX-414 and MAR-M509 substrates. Field testing was performed under industrial conditions where the continuous duty engine, used for power generation, ran on a liquid fuel contaminated with sodium and sulfur. The engine test was terminated after nearly 8,000 hours of operation. Visual examination and micro-structural analysis indicated that EB-PVD and LPPS overlay coatings were more effective than simple and modified aluminides for hot section hot corrosion protection. The protection of overlay coatings on nozzle airfoils was found to increase with their chromium content.


1996 ◽  
Vol 457 ◽  
Author(s):  
S. M. Pickard ◽  
A. K. Ghosh

ABSTRACTA rapid physical vapor deposition process (PVD) utilizing a high speed rotating substrate and small substrate-to-source spacing has been used to produce bulk sheet of Ti-Al alloys in the compositional range Ti-12% Al to Ti-75% Al1 at a rate of 1–3 μm/minute. Microstructural architectures produced by the method comprise of either fully homogenous phase mixtures of nano-grains, or nanolaminated material, depending on the substrate rotational rate, with lower rotational rate producing a layered microstructure. Defect populations within the as-deposited material are characterized by TEM and SEM, and hot pressing consolidation of the as-deposited material, which retains a grain size < 1000 nm, has been investigated. While indentation hardness of α2+γ(2 phase) alloys exceeded 7 GPa, brittle failure occurred in the elastic regime at nominally lower tensile stress than that for conventionally produced alloys containing Nb and Cr as solute elements. α2+γ alloys can exhibit tensile elongations of more than 100% at 850°C with retention of fine grain size. Elevated temperature failure occurs by the formation of voids in regions of compositional variability in the composite where single phase α2-Ti3Al structure was present.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1667 ◽  
Author(s):  
Xiaoyu Zhao ◽  
Jiahong Wen ◽  
Aonan Zhu ◽  
Mingyu Cheng ◽  
Qi Zhu ◽  
...  

The synthesis of nanostructured surfaces and thin films has potential applications in the field of plasmonics, including plasmon sensors, plasmon-enhanced molecular spectroscopy (PEMS), plasmon-mediated chemical reactions (PMCRs), and so on. In this article, we review various nanostructured surfaces and thin films obtained by the combination of nanosphere lithography (NSL) and physical vapor deposition. Plasmonic nanostructured surfaces and thin films can be fabricated by controlling the deposition process, etching time, transfer, fabrication routes, and their combination steps, which manipulate the formation, distribution, and evolution of hotspots. Based on these hotspots, PEMS and PMCRs can be achieved. This is especially significant for the early diagnosis of hepatocellular carcinoma (HCC) based on surface-enhanced Raman scattering (SERS) and controlling the growth locations of Ag nanoparticles (AgNPs) in nanostructured surfaces and thin films, which is expected to enhance the optical and sensing performance.


Sign in / Sign up

Export Citation Format

Share Document