scholarly journals Spectroscopic and Structural Analyses of Opuntia Robusta Mucilage and Its Potential as an Edible Coating

Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 466 ◽  
Author(s):  
Aurea Bernardino-Nicanor ◽  
José Montañez-Soto ◽  
Eloy Conde-Barajas ◽  
María Negrete-Rodríguez ◽  
Gerardo Teniente-Martínez ◽  
...  

Mucilage extracted from the parenchymatous and chlorenchymatous tissues of Opuntia robusta were obtained using water or ethanol as the extraction solvent. The changes in the different tissues by using different extraction solvents were evaluated via scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) and Raman spectroscopy; in addition, the effect of mucilage coating on the various quality characteristics of tomato (Lycopersicum sculentum) was evaluated. The SEM results showed that the mucilage extracted from the parenchyma had a higher aggregation level that the mucilage extracted from the chlorenchyma. The presence of three characteristic bands of pectic substances in the FT-IR spectra between 1050 and 1120 cm−1 indicated that the mucilage extracted from the parenchymatous tissue had a higher content of pectic compounds than the mucilage extracted from the chlorenchymatous tissue. It was also observed in the Raman spectra that the level of pectic substances in the mucilage extracted from the parenchymatous was higher than that in the mucilage extracted from the chlorenchymatous tissue. The mucilage extracted from the parenchymatous tissue was more effective as an edible coating than the mucilage extracted from the chlorenchymatous tissue. Tomatoes covered with mucilage showed significantly enhanced firmness and reduced weight loss. The uncoated tomatoes showed higher lycopene content than the coated tomatoes on the 21st day. This study showed that the Opuntia robusta tissue and extraction solvent influence mucilage characteristics and that Opuntia robusta mucilage is a promising edible coating.

2018 ◽  
Author(s):  
Lincy Tom ◽  
Victoria A. Smolenski ◽  
Jerry P. Jasinski ◽  
M.R. Prathapachandra Kurup

The reaction of p-hydroxybenzaldehyde with an equimolar amount of isonicotinic hydrazide afforded two polymorphic and hydrate forms of p-hydroxybenzaldehyde isonicotinichydrazone (HBIH) by varying the experimental reaction conditions. The compounds are fully characterized by means of single crystal and powder diffraction methods, vibrational spectroscopy (FT-IR and Raman), thermal and elemental analysis. The compound crystallizes in three different forms in two different space groups, P21/c (form PA and PB) and Pbca (PC). The Hirshfeld surface analysis shows the differences in the relative contributions of intermolecular interactions to the total Hirshfeld surface area for the HBIH molecules. The calculated pairwise interaction energies (104-116 kJ/mol) can be related to the stability of the crystals. Energy framework analysis identifies the interaction hierarchy and their topology. The geometry and conformation of the three forms are essentially similar which differ only by packing arrangement.


2018 ◽  
Author(s):  
Lincy Tom ◽  
Victoria A. Smolenski ◽  
Jerry P. Jasinski ◽  
M.R. Prathapachandra Kurup

The reaction of p-hydroxybenzaldehyde with an equimolar amount of isonicotinic hydrazide afforded two polymorphic and hydrate forms of p-hydroxybenzaldehyde isonicotinichydrazone (HBIH) by varying the experimental reaction conditions. The compounds are fully characterized by means of single crystal and powder diffraction methods, vibrational spectroscopy (FT-IR and Raman), thermal and elemental analysis. The compound crystallizes in three different forms in two different space groups, P21/c (form PA and PB) and Pbca (PC). The Hirshfeld surface analysis shows the differences in the relative contributions of intermolecular interactions to the total Hirshfeld surface area for the HBIH molecules. The calculated pairwise interaction energies (104-116 kJ/mol) can be related to the stability of the crystals. Energy framework analysis identifies the interaction hierarchy and their topology. The geometry and conformation of the three forms are essentially similar which differ only by packing arrangement.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
I Mamarelis ◽  
V Mamareli ◽  
M Kyriakidou ◽  
O Tanis ◽  
C Mamareli ◽  
...  

Abstract Background The atherosclerotic ascending aorta could represent a potential source of emboli or could be an indicator of atherosclerosis in general with high mortality. The mechanism of aneurysm formation and atherosclerosis of the ascending aorta at the molecular level has not yet been clarified. To approach the mechanism of ascending aortic lesions and mineralization at a molecular level, we used the non-destructive FT-IR, Raman spectroscopy, SEM and Hypermicroscope. Methods Six ascending aorta biopsies were obtained from patients who underwent aortic valve replacement (AVR) cardiac surgery. CytoViva (einst inc) hyperspectral microscope was used to obtain the images of ascending aorta. The samples were dissolved in hexane on a microscope glass plate. The FT-IR and Raman spectra were recorded with Nicolet 6700 thermoshintific and micro-Raman Reinshaw (785nm, 145 mwatt), respectively. The architecture of ascending aorta biopsies was obtained by using scanning electron microscope (SEM of Fei Co) without any coating. Results FT-IR and Raman spectra showed changes arising from the increasing of lipophilic environment and aggregate formation (Fig. 1). The band at 1744 cm–1 is attributed to aldehyde CHO mode due to oxidation of lipids. The shifts of the bands of the amide I and amide II bands to lower are associated with protein damage, in agreement with SEM data. The bands at about 1170–1000 cm–1 resulted from the C-O-C of advanced glycation products as result of connecting tissues fragmentations and polymerization. The spectroscopic data were analogous with the lesions observed with SEM and hypermicroscopic images. Conclusions The present innovate molecular structure analysis showed that upon ascending aorta aneurysm development an excess of lipophilic aggregate formation and protein lesions, changing the elasticity of the aorta's wall. The released Ca2+ interacted mostly with carbonate-terminal of cellular protein chains accelerated the ascending aorta calcifications. Figure 1. FT-IR and Raman spectra Funding Acknowledgement Type of funding source: None


Biopolymers ◽  
1984 ◽  
Vol 23 (4) ◽  
pp. 623-627 ◽  
Author(s):  
V. Renugopalakrishnan ◽  
P. H. B. Kloumann ◽  
Rajendra S. Bhatnagar

2014 ◽  
Vol 70 (a1) ◽  
pp. C995-C995
Author(s):  
Duane Choquesillo-Lazarte ◽  
Cristóbal Verdugo-Escamilla ◽  
Juan Manuel García-Ruiz

The interest in multicomponent solid forms has increased in the last years within the pharmaceutical industry and also the solid-state community due to the possibility of obtaining materials with new properties [1]. Crystallization strategies, supported by solvent- and solid-based techniques, have also received attention in the search and development of methodologies for the screening of multicomponent crystals. In this work, ethenzamide, an anti-inflammatory and analgesic drug, was selected as a model drug to develop cocrystals on the basis of the synthon types using a series of phenolic coformers. Ethenzamide cocrystals and cocrystal solvates have been reported recently [2,3]. Liquid Assisted Grinding (LAG) and solution methods were used as synthetic tools. Attempts to produce cocrystals by LAG and Reaction Crystallization led to the formation of polycrystalline material. The solids obtained were then characterized by powder X-ray diffraction (PXRD), FT-IR and Raman spectroscopy. Recrystallization by slow solvent evaporation was carried out when the above-referred techniques strongly suggest the formation of a new solid form. The structure of five new multicomponent solids has been determined by single crystal X-ray diffraction. Additional stability studies have been performed at controlled relative humidity conditions and followed by PXRD.


2021 ◽  
Vol 22 (23) ◽  
pp. 12991
Author(s):  
Katarzyna Susniak ◽  
Mikolaj Krysa ◽  
Dominika Kidaj ◽  
Monika Szymanska-Chargot ◽  
Iwona Komaniecka ◽  
...  

Multimodal spectroscopic imaging methods such as Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI), Fourier Transform Infrared spectroscopy (FT-IR) and Raman spectroscopy were used to monitor the changes in distribution and to determine semi quantitatively selected metabolites involved in nitrogen fixation in pea root nodules. These approaches were used to evaluate the effectiveness of nitrogen fixation by pea plants treated with biofertilizer preparations containing Nod factors. To assess the effectiveness of biofertilizer, the fresh and dry masses of plants were determined. The biofertilizer was shown to be effective in enhancing the growth of the pea plants. In case of metabolic changes, the biofertilizer caused a change in the apparent distribution of the leghaemoglobin from the edges of the nodule to its centre (the active zone of nodule). Moreover, the enhanced nitrogen fixation and presumably the accelerated maturation form of the nodules were observed with the use of a biofertilizer.


2018 ◽  
Vol 15 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Baghdad Science Journal

Polyaniline membranes of aniline were produced using an electrochemical method in a cell consisting of two poles. The effect of the vaccination was observed on the color of membranes of polyaniline, where analysis as of blue to olive green paints. The sanction of PANI was done by FT-IR and Raman techniques. The crystallinity of the models was studied by X-ray diffraction technique. The different electronic transitions of the PANI were determined by UV-VIS spectroscopy. The electrical conductivity of the manufactured samples was measured by using the four-probe technique at room temperature. Morphological studies have been determined by Atomic force microscopy (AFM). The structural studies have been measured by (SEM).


2017 ◽  
Vol 19 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Meral Yildirim ◽  
Azmi Seyhun Kipcak ◽  
Emek Moroydor Derun

Abstract In this study, sonochemical-assisted magnesium borate synthesis is studied from different boron sources. Various reaction parameters are successfully applied by a simple and green method. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and Raman spectroscopies are used to characterize the synthesized magnesium borates on the other hand surface morphologies are investigated by using scanning electron microscope (SEM). The XRD analyses showed that the products were admontite [MgO(B2O3)3 · 7(H2O)] with JCPDS (Joint Committee on Powder Diffraction Standards) no. of 01-076-0540 and mcallisterite [Mg2(B6O7(OH)6)2 · 9(H2O)] with JCPDS no. of 01-070-1902. The results that found in the spectroscopic studies were in a good agreement with characteristic magnesium borate bands in both regions of infra-red and visible. According to SEM results, obtained borates were in micro and sub-micro scales. By the use of ultrasonication, reaction yields were found between 84.2 and 97.9%. As a result, it is concluded that the sonochemical approach is a practicable synthesis method to get high efficiency and high crystallinity in the synthesis magnesium borate compounds.


Sign in / Sign up

Export Citation Format

Share Document