scholarly journals Surface Deposition on Titania in a Physiological Solution with Ultraviolet Irradiation In Situ and Effect of Heat Treatment

Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 80 ◽  
Author(s):  
Chun-Yang Su ◽  
Qing Zhou ◽  
Cheng-Hong Zou

Photocatalysis-enhanced surface deposition on titanium surfaces for biomedical applications is investigated in this work. Immersion tests of commercially pure titanium (CP-Ti) pieces in a simulated body fluid adding bovine serum albumin (BSA) under ultraviolet (UV) irradiation in situ are carried out. The morphologies of deposition are characterized by SEM and stereo imaging microscopy, and the quantity and composition of the deposition is examined by SEM, energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy. The results show a deposition layer with thickness 89 μm is produced on 600 °C heat-treated specimens. An irradiation pattern of lighting/dark repeated results in more deposition on heat-treated CP-Ti. It is confirmed that a mixture of anatase and rutile phases generated on 600 °C heat-treated specimens has enhanced photocatalysis. The decomposition of BSA by photocatalysis, a possible product of nitrite also results in enhanced deposition on Ti. EDS analysis shows large reduction of carbon in the deposition on UV-light exposed surfaces compared to no UV-light-exposed surfaces. Furthermore, C–H bond decreases and C–C, Ca–O, and P–O bond increases are found on photoactivated surfaces. The deposition produced by this method is expected to be useful for applications to biomaterials with high bioactivity.

2019 ◽  
Vol 7 (4) ◽  
pp. 109 ◽  
Author(s):  
Tetsuhiro Tsujino ◽  
Akira Takahashi ◽  
Taisuke Watanabe ◽  
Kazushige Isobe ◽  
Yutaka Kitamura ◽  
...  

Recent progress in the industrial development of dental implants has improved their surface bio-affinity, while clinical implantologists attempt to improve it through coating with various compounds, including platelet-rich plasma (PRP) in clinical settings. However, it is poorly understood how PRP acts on titanium surfaces. To validate this surface modification method and demonstrate how platelet-derived soluble biomolecules released from the activated adherent platelets act on plain, commercially pure-titanium (cp-Ti) plates, we evaluated the distribution of biomolecules by immunofluorescence. PPARγ, PDGF-B, and TGFβ1 were similarly released at immunofluorescence levels from activated adherent platelets, retained in the surrounding extra-platelet spaces for a while, and did not immediately diffuse away to distant spaces. Exogenously added CaCl2 augmented release and retention of those biomolecules along with activation and aggregation. Taken together with our previous data regarding platelet adhesion, these findings suggest that especially when treated with CaCl2, platelets immediately adhere on cp-Ti plates to release their stored biomolecules in the absence of plasma proteins and that these biomolecules do not diffuse away, but stay longer in extra-platelet spaces around the platelets by newly formed, immature fibrin fiber fragments. Consequently, these retained biomolecules are anticipated to cooperatively stabilize implants by stimulating alveolar bone regeneration and integration.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
D. Mpumlwana ◽  
V. Msomi ◽  
C. J. S. Fourie

Titanium is seen as a good material for application in many fields due to its compatibility with different environments. However, it remains unclear whether what happens when this material is exposed to certain high temperatures for longer periods of time. The primary objective of this study was to investigate the effect of heat on a 3 mm commercially pure titanium grade 2 plate at a constant temperature of 900°C at different heating times. Three different heating times were employed in this study: 30 minutes for the first period, 60 minutes for the second period, and 90 minutes for the third period. All heated samples were air cooled to room temperature after each heating period. Microhardness, microstructure, tensile strength, and scanning electron microscopy (SEM) tests were performed. All the results were analyzed and compared with the parent sample. It was observed that the heating period influenced microstructural arrangement of the material. The microstructural changes affected negatively the ultimate tensile strength while percentage elongation was improved. The microhardness of the heat treated samples were firstly negatively affected which later jumped and exceeded that of the parent material.


2005 ◽  
Vol 288-289 ◽  
pp. 343-346 ◽  
Author(s):  
Yuehuei H. An ◽  
Melissa Farino ◽  
Qian K. Kang ◽  
Marina V. Demcheva ◽  
John Vournakis

It is known that glucosamine/chitosan derivatives have the ability of inhibiting bacterial adhesion to tooth and biomaterial surfaces. The hypotheses of this article included 1) the inhibition effects of different (chemically) glucosamine products are different and 2) more water-soluble glucosamine preparation(s) may have a superior inhibition effect. The basic testing systems are in vitro static adhesion models and the amount of the adhesion is evaluated by direct counting using epifluorecense microscopy. The test material is a smooth surfaced commercially pure titanium (cp-Ti). The bacterium tested is Staphylococcus aureus. The results showed that compared to the control samples (without glucosamine or chitosan coating) the sulfated p-GlcNAc and Sigma glucosamine HCl significantly inhibited S. aureus adhesion to titanium surfaces (94% and 78% respectively)


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 401
Author(s):  
Ruzil Farrakhov ◽  
Olga Melnichuk ◽  
Evgeny Parfenov ◽  
Veta Mukaeva ◽  
Arseniy Raab ◽  
...  

The paper compares the coatings produced by plasma electrolytic oxidation (PEO) on commercially pure titanium and a novel superelastic alloy Ti-18Zr-15Nb (at. %) for implant applications. The PEO coatings were produced on both alloys in the identical pulsed bipolar regime. The properties of the coatings were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). The PEO process kinetics was modeled based on the Avrami theorem and Cottrell equation using a relaxation method. The resultant coatings contain TiO2, for both alloys, and NbO2, Nb2O5, ZrO2 for Ti-18Zr-15Nb alloy. The coating on the Ti-18Zr-15Nb alloy has a higher thickness, porosity, and roughness compared to that on cp-Ti. The values of the kinetic coefficients of the PEO process—higher diffusion coefficient and lower time constant for the processing of Ti-18Zr-15Nb—explain this effect. According to the electrochemical studies, PEO coatings on Ti-18Zr-15Nb alloy provide better corrosion protection. Higher corrosion resistance, porosity, and roughness contribute to better biocompatibility of the PEO coating on Ti-18Zr-15Nb alloy compared to cp-Ti.


2012 ◽  
Vol 548 ◽  
pp. 174-178 ◽  
Author(s):  
Chong Yang Gao ◽  
Wei Ran Lu

By using a dislocation-based plastic constitutive model for hcp metals developed by us recently, the dynamic thermomechanical response of an important industrial material, commercially pure titanium (CP-Ti), was described at different temperatures and strain rates. The constitutive parameters of the material are determined by an efficient optimization method for a globally optimal solution. The model can well predict the dynamic response of CP-Ti by the comparison with experimental data and the Nemat-Nasser-Guo model.


Author(s):  
Karibeeran Shanmuga Sundaram ◽  
Gurusami Kiliyappan ◽  
Senthil Kumaran Selvadurai

Laser shock peening (LSP) is one of the innovative technique that produces a compressive residual stress on the surface of metallic materials, thereby significantly increasing its fatigue life in applications where failure is caused by surface-initiated cracks. The specimens were treated with laser shock waves with different processing parameters, and characterization studies were made on treated specimens. The purpose of the present study was to investigate the influence of Nd:YAG laser on commercially pure titanium (CP-Ti) used in prosthetic dental restorations. The treatment influenced change in microstructure, micro hardness, surface roughness, and wear resistance characteristics. Though CP-Ti is considered as an excellent material for dental applications due to its outstanding biocompatibility, it is not suitable when high mastication forces are applied. In the present study, pulsed Nd:YAG laser surface treatment technique was adopted to improve the wear resistance of CP-Ti. The wear test pin specimens of CP-Ti were investment cast with centrifugal titanium casting machine. The wear properties of specimens were evaluated after LSP on a “pin-on-disc” wear testing tribometer, as per ASTM G99-05 standards. The results of the wear experiment showed that the treated laser surface has higher wear resistance, micro hardness, and surface roughness compared to as-cast samples. The improvement of wear resistance may be attributed due to grain refinement imparted by LSP processes. The microstructure, wear surfaces, wear debris, and morphology of the specimen were analyzed by using optical electron microscope, scanning electron microscope, and X-ray diffraction (XRD). The data were compared using ANOVA and post-hoc Tukey tests. The characteristic change resulted in increase in wear resistance and decrease in wear rate. Hence, it is evident that the more reliable and removable partial denture metal frameworks for dental prostheses may find its applications.


2005 ◽  
Vol 19 (2) ◽  
pp. 139-143 ◽  
Author(s):  
Wagner Sotero Fragoso ◽  
Guilherme Elias Pessanha Henriques ◽  
Edwin Fernando Ruiz Contreras ◽  
Marcelo Ferraz Mesquita

Commercially pure titanium (CP Ti) has been widely applied to fabricate cast devices because of its favorable properties. However, the mold temperature recommended for the manufacture of casts has been considered relatively low, causing inadequate castability and poor marginal fit of cast crowns. This study evaluated and compared the influence of mold temperature (430°C - as control, 550°C, 670°C) on the marginal discrepancies of cast CP Ti crowns. Eight bovine teeth were prepared on a mechanical grinding device and impressions were used to duplicate each tooth and produce eight master dies. Twenty-four crowns were fabricated using CP Ti in three different groups of mold temperature (n = 8): 430°C (as control), 550°C and 670°C. The gap between the crown and the bovine tooth was measured at 50 X magnification with a traveling microscope. The marginal fit values of the cast CP Ti crowns were submitted to the Kruskal-Wallis test (p = 0.03). The 550°C group (95.0 µm) showed significantly better marginal fit than the crowns of the 430°C group (203.4 µm) and 670°C group (213.8 µm). Better marginal fit for cast CP Ti crowns was observed with the mold temperature of 550°C, differing from the 430°C recommended by the manufacturer.


2014 ◽  
Vol 28 (12) ◽  
pp. 1207-1218 ◽  
Author(s):  
Miguel A. Fernández-Rodríguez ◽  
Alda Y. Sánchez-Treviño ◽  
Elvira De Luna-Bertos ◽  
Javier Ramos-Torrecillas ◽  
Olga García-Martínez ◽  
...  

10.30544/384 ◽  
2011 ◽  
Vol 17 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Hamid Reza Asgari Bidhendi ◽  
Majid Pouranvari

Titanium alloys and stainless steel 316L are still the most widely used biomaterials for implants despite emerging new materials for this application. There is still someambiguity in corrosion behavior of metals in simulated body fluid (SBF). This paper aims at investigating the corrosion behavior of commercially pure titanium (CP-Ti), Ti–6Al–4V and 316LVM stainless steel (316LVM) in SBF (Hank’s solution) at37 ºC using the cyclic polarization test. Corrosion behavior was described in terms of breakdown potential, the potential and rate ofcorrosion, localized corrosion resistance, andbreakdown repassivation. The effects of anodizing on CP-Ti samples and the passivation on the 316LVM were studied in detail. It was shown that CP-Ti exhibited superior corrosion properties compared to Ti–6Al–4V and 316LVM.


Sign in / Sign up

Export Citation Format

Share Document