scholarly journals Particle Deposition to Silica Surfaces Functionalized with Cationic Polyelectrolytes

2021 ◽  
Vol 5 (2) ◽  
pp. 26
Author(s):  
Dominik Kosior ◽  
Plinio Maroni ◽  
Michal Borkovec

Positively charged water-solid interfaces are prepared by adsorption of a cationic polyelectrolyte poly(diallyldimethylammonium chloride) (PDADMAC) from aqueous solutions to planar silica substrates. These substrates are characterized by atomic force microscopy (AFM), optical reflectivity, and streaming current measurements. By tuning the amount of adsorbed polyelectrolyte, the surface charge of the substrate can be systematically varied. These substrates are further used to study deposition of sulfate latex nanoparticles, which is also accomplished by optical reflectivity. This deposition process is found to be consistent with an extension of the random sequential adsorption (RSA) model in a semi-quantitative fashion. Such deposition studies were further used to ascertain that the substrates obtained by in situ and ex situ functionalization behave in an identical fashion.


2007 ◽  
Vol 1027 ◽  
Author(s):  
Do Young Noh ◽  
Ki-Hyun Ryu ◽  
Hyon Chol Kang

AbstractThe transformation of Au thin films grown on sapphire (0001) substrates into nano crystals during thermal annealing was investigated by in situ synchrotron x-ray scattering and ex situ atomic force microscopy (AFM). By monitoring the Au(111) Bragg reflection and the low Q reflectivity and comparing them with ex situ AFM images, we found that polygonal-shape holes were nucleated and grow initially. As the holes grow larger and contact each other, their boundary turns into Au nano crystals. The Au nano crystals have a well-defined (111) flat top surface and facets in the in-plane direction.



Author(s):  
Pengcheng Chen ◽  
Jordan N. Metz ◽  
Adam S. Gross ◽  
Stuart E. Smith ◽  
Steven P. Rucker ◽  
...  


2020 ◽  
Vol 98 (5) ◽  
pp. 365-375
Author(s):  
Andrea Quintero ◽  
Patrice Gergaud ◽  
Jean-Michel Hartmann ◽  
Vincent Delaye ◽  
Nicolas Bernier ◽  
...  


2020 ◽  
Vol MA2020-02 (24) ◽  
pp. 1750-1750
Author(s):  
Andrea Quintero Colmenares ◽  
Patrice Gergaud ◽  
Jean-Michel Hartmann ◽  
Vincent Delaye ◽  
Nicolas Bernier ◽  
...  


2002 ◽  
Vol 17 (7) ◽  
pp. 1622-1633 ◽  
Author(s):  
Xiaowu Fan ◽  
Mi-Kyoung Park ◽  
Chuanjun Xia ◽  
Rigoberto Advincula

Nanostructured montmorillonite/poly(diallyldimethylammonium chloride) multilayer thin films were fabricated up to 100 layers thick by stepwise alternating polyelectrolyte and clay deposition from solution. The structure and morphology of the films were characterized by x-ray diffraction, ellipsometry, atomic force microscopy, and quartz crystal microbalance ex situ and in situ measurements. The mechanical properties were tested by nanoindentation. The hardness of the multilayer thin film was 0.46 GPa. The thin film's modulus was correlated to its ordering and anisotropic structure. Both hardness and modulus of this composite film were higher than those of several other types of polymer thin films.



Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7333
Author(s):  
Claudia Filoni ◽  
Bahram Shirzadi ◽  
Marco Menegazzo ◽  
Eugenio Martinelli ◽  
Corrado Di Natale ◽  
...  

Flexible and economic sensor devices are the focus of increasing interest for their potential and wide applications in medicine, food analysis, pollution, water quality, etc. In these areas, the possibility of using stable, reproducible, and pocket devices can simplify the acquisition of data. Among recent prototypes, sensors based on laser-induced graphene (LIGE) on Kapton represent a feasible choice. In particular, LIGE devices are also exploited as electrodes for sensing in liquids. Despite a characterization with electrochemical (EC) methods in the literature, a closer comparison with traditional graphite electrodes is still missing. In this study, we combine atomic force microscopy with an EC cell (EC-AFM) to study, in situ, electrode oxidation reactions when LIGE or other graphite samples are used as anodes inside an acid electrolyte. This investigation shows the quality and performance of the LIGE electrode with respect to other samples. Finally, an ex situ Raman spectroscopy analysis allows a detailed chemical analysis of the employed electrodes.



2011 ◽  
Vol 6 (2) ◽  
pp. 65-76
Author(s):  
Ekaterina E. Rodyakina ◽  
Sergey S. Kosolobov ◽  
Aleksandr V. Latyshev

Existence of adatom gradient concentration on surface between step bunches was shown under sublimation, homoepitaxial growth and near equilibrium conditions on silicon (111) surface at above 900 ºС by means of in situ ultrahigh vacuum reflection electron microscopy and ex situ atomic force microscopy. It is experimentally confirmed that adatom have negative (at 1 100 ºС) and positive (at 1 300 ºС) effective charge. We found out the sign of adatom effective charge independent on the supersaturation volume on the surface. On the hasement of experimental data we evaluated the effective charge of adatom at 1 280ºС; this quantity is placed between 0,07 ± 0,01 and 0,17 ± 0,02 of electron unit



1994 ◽  
Vol 337 ◽  
Author(s):  
L. Bellard ◽  
J.M. Themlin ◽  
F. Palmino ◽  
A. Cros

ABSTRACTWe have investigated the microscopic properties of copper and chromium layers deposited on polyphenylquinoxaline (PPQ). PPQ is a thermostable polymer used for multichip module applications. The metal is deposited under ultra-high vacuum conditions and analysed in-situ by X-ray photoemission (XPS) and atomic force microscopy (ex situ). Copper does not react significantly with the PPQ and tends to diffuse into the polymer matrix upon annealing. On the contrary, chromium strongly reacts with the polymer surface at room temperature. With increasing metal coverage, chromium grows in a layer-by-layer mode and the reacted interface is progressively burried under the pure metal layer.



Sign in / Sign up

Export Citation Format

Share Document