scholarly journals An Improved Robust Adaptive Controller for a Fed-Batch Bioreactor with Input Saturation and Unknown Varying Control Gain via Dead-Zone Quadratic Forms

Computation ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 100
Author(s):  
Alejandro Rincón ◽  
Gloria María Restrepo ◽  
Óscar J. Sánchez

In this work, a new adaptive controller is designed for substrate control of a fed-batch bioreactor in the presence of input saturation and unknown varying control gain with unknown upper and lower bounds. The output measurement noise and the unknown varying nature of reaction rate and biomass concentration and water volume are also handled. The design is based on dead zone quadratic forms. The designed controller ensures the convergence of the modified tracking error and the boundedness of the updated parameters. As the first distinctive feature, a new robust adaptive auxiliary system is proposed in order to tackle input saturation and control gain uncertainty. As the second distinctive feature, the modified tracking error converges to a compact region whose bound is user-defined, in contrast to related studies where the convergence region depends on upper bounds of either external disturbances, system states, model parameters or terms and model parameter values. Simulations confirm the properties of the closed loop behavior.

2020 ◽  
Vol 11 (1) ◽  
pp. 251
Author(s):  
Alejandro Rincón ◽  
Fredy E. Hoyos ◽  
John E. Candelo-Becerra

In this work, substrate control of a biological process with unknown varying control gain, input saturation, and uncertain reaction rate is addressed. A novel adaptive controller is proposed, which tackles the combined effect of input saturation and unknown varying control gain with unknown upper and lower bounds. The design is based on dead zone radially unbounded Lyapunov-like functions, with the state backstepping as control framework. The convergence of the modified tracking error and the boundedness of the updated parameters are ensured by means of the Barbalat’s lemma. As the first distinctive feature, a new second-order auxiliary system is proposed that tackles the effect of saturated input and the unknown varying control gain with unknown upper and lower bounds. As the second distinctive feature, the modified tracking error converges to a compact set whose width is user-defined, so that it does not depend on bounds of either external disturbances, model terms, or model coefficients. The convergence region of the current tracking error is determined for the closed loop system subject to the formulated controller and the proposed auxiliary system. Finally, numerical simulation illustrates the performance of the proposed controller.


Computation ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 82
Author(s):  
Alejandro Rincón ◽  
Gloria M. Restrepo ◽  
Fredy E. Hoyos

In this study, a novel robust observer-based adaptive controller was formulated for systems represented by second-order input–output dynamics with unknown second state, and it was applied to concentration tracking in a chemical reactor. By using dead-zone Lyapunov functions and adaptive backstepping method, an improved control law was derived, exhibiting faster response to changes in the output tracking error while avoiding input chattering and providing robustness to uncertain model terms. Moreover, a state observer was formulated for estimating the unknown state. The main contributions with respect to closely related designs are (i) the control law, the update law and the observer equations involve no discontinuous signals; (ii) it is guaranteed that the developed controller leads to the convergence of the tracking error to a compact set whose width is user-defined, and it does not depend on upper bounds of model terms, state variables or disturbances; and (iii) the control law exhibits a fast response to changes in the tracking error, whereas the control effort can be reduced through the controller parameters. Finally, the effectiveness of the developed controller is illustrated by the simulation of concentration tracking in a stirred chemical reactor.


2019 ◽  
Vol 17 (10) ◽  
pp. 2541-2549 ◽  
Author(s):  
Samia Larguech ◽  
Sinda Aloui ◽  
Olivier Pagès ◽  
Ahmed El Hajjaji ◽  
Abdessattar Chaari

Author(s):  
TIESHAN LI ◽  
YANSHENG YANG ◽  
JIANGQIANG HU ◽  
LINJIA YANG

In this paper, a robust adaptive fuzzy controller is presented for a wide class of perturbed uncertain nonlinear system with unknown virtual control gain function (UVCGF). The Mamdani fuzzy system is used to approximate unstructured uncertain functions in the system. The proposed algorithm, which incorporated Nussbaum-type gain into the decoupled backstepping approach, does not require a priori knowledge of the sign of UVCGF, and circumvents the controller-singularity problem gracefully in some existing literatures. It proved that the tracking error can be driven to a small residual set while keeping all signals in the closed-loop system semi-globally uniformly ultimately bounded (SGUUB). Simulation results are presented to validate the effectiveness of the proposed controller.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Santiago Rómoli ◽  
Mario Serrano ◽  
Francisco Rossomando ◽  
Jorge Vega ◽  
Oscar Ortiz ◽  
...  

The lack of online information on some bioprocess variables and the presence of model and parametric uncertainties pose significant challenges to the design of efficient closed-loop control strategies. To address this issue, this work proposes an online state estimator based on a Radial Basis Function (RBF) neural network that operates in closed loop together with a control law derived on a linear algebra-based design strategy. The proposed methodology is applied to a class of nonlinear systems with three types of uncertainties: (i) time-varying parameters, (ii) uncertain nonlinearities, and (iii) unmodeled dynamics. To reduce the effect of uncertainties on the bioreactor, some integrators of the tracking error are introduced, which in turn allow the derivation of the proper control actions. This new control scheme guarantees that all signals are uniformly and ultimately bounded, and the tracking error converges to small values. The effectiveness of the proposed approach is illustrated on the basis of simulated experiments on a fed-batch bioreactor, and its performance is compared with two controllers available in the literature.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xiang-fei Meng ◽  
Ying Wang ◽  
Mao-long Lv

Considering that many factors such as actuator input dead zone, backlash, and external disturbance could affect the exactness of trajectory tracking, therewith a robust adaptive neural network control scheme on the basis of control allocation is proposed for the sake of tracking control of multisteering plane aircraft with actuator input dead zone or backlash nonlinearity. First of all, an actuator input dead zone or backlash nonlinearity control assignment model is established and the control allocation equation is derived. Secondly, the system nonlinear uncertainty is compensated by means of radial basis function neural network, and a robust term is introduced to achieve robustness against external disturbance and system errors. Finally, by utilizing Lyapunov stability theorem, it has been proved that all the signals in the closed-loop system are bounded, and the tracking error converges to a small residual set asymptotically. Simulation results on ICE101 multisteering plane aircraft demonstrate the outstanding tracking performance and strong robustness as well as effectiveness of the proposed approach, which can effectively overcome the adverse influence of dead zone, backlash nonlinearity, and external disturbance on the system.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Guoqiang Zhu ◽  
Lingfang Sun ◽  
Xiuyu Zhang

A neural network robust control is proposed for a class of generic hypersonic flight vehicles with uncertain dynamics and stochastic disturbance. Compared with the present schemes of dealing with dynamic uncertainties and stochastic disturbance, the outstanding feature of the proposed scheme is that only one parameter needs to be estimated at each design step, so that the computational burden can be greatly reduced and the designed controller is much simpler. Moreover, by introducing a performance function in controller design, the prespecified transient and performance of tracking error can be guaranteed. It is proved that all signals of closed-loop system are uniformly ultimately bounded. The simulation results are carried out to illustrate effectiveness of the proposed control algorithm.


2018 ◽  
Vol 41 (2) ◽  
pp. 560-572 ◽  
Author(s):  
Baofang Wang ◽  
Sheng Li ◽  
Qingwei Chen

This paper addresses the problem of robust adaptive finite-time tracking control for a class of mechanical systems in the presence of model uncertainties, unknown external disturbances, and input nonlinearities containing saturation and deadzone. Without imposing any conditions on the model uncertainties, radial basis function neural networks are used to approximate unknown nonlinear continuous functions, and an adaptive tracking control scheme is proposed by exploiting the recursive design method. It is shown that the input saturation and deadzone model can be expressed as a simple linear system with a time-varying gain and bounded disturbance. An adaptive compensation term for the upper bound of the lumped disturbance is introduced. The semi-global finite-time uniform ultimate boundedness of the corresponding closed-loop tracking error system is proved with the help of the finite-time Lyapunov stability theory. Finally, an example is given to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document