scholarly journals RNN-ABC: A New Swarm Optimization Based Technique for Anomaly Detection

Computers ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 59 ◽  
Author(s):  
Ayyaz-Ul-Haq Qureshi ◽  
Hadi Larijani ◽  
Nhamoinesu Mtetwa ◽  
Abbas Javed ◽  
Jawad Ahmad

The exponential growth of internet communications and increasing dependency of users upon software-based systems for most essential, everyday applications has raised the importance of network security. As attacks are on the rise, cybersecurity should be considered as a prime concern while developing new networks. In the past, numerous solutions have been proposed for intrusion detection; however, many of them are computationally expensive and require high memory resources. In this paper, we propose a new intrusion detection system using a random neural network and an artificial bee colony algorithm (RNN-ABC). The model is trained and tested with the benchmark NSL-KDD data set. Accuracy and other metrics, such as the sensitivity and specificity of the proposed RNN-ABC, are compared with the traditional gradient descent algorithm-based RNN. While the overall accuracy remains at 95.02%, the performance is also estimated in terms of mean of the mean squared error (MMSE), standard deviation of MSE (SDMSE), best mean squared error (BMSE), and worst mean squared error (WMSE) parameters, which further confirms the superiority of the proposed scheme over the traditional methods.

2017 ◽  
Vol 31 (4) ◽  
pp. 436-456 ◽  
Author(s):  
Abbas Javed ◽  
Hadi Larijani ◽  
Ali Ahmadinia ◽  
Rohinton Emmanuel

The random neural network (RNN) is a probabilitsic queueing theory-based model for artificial neural networks, and it requires the use of optimization algorithms for training. Commonly used gradient descent learning algorithms may reside in local minima, evolutionary algorithms can be also used to avoid local minima. Other techniques such as artificial bee colony (ABC), particle swarm optimization (PSO), and differential evolution algorithms also perform well in finding the global minimum but they converge slowly. The sequential quadratic programming (SQP) optimization algorithm can find the optimum neural network weights, but can also get stuck in local minima. We propose to overcome the shortcomings of these various approaches by using hybridized ABC/PSO and SQP. The resulting algorithm is shown to compare favorably with other known techniques for training the RNN. The results show that hybrid ABC learning with SQP outperforms other training algorithms in terms of mean-squared error and normalized root-mean-squared error.


2012 ◽  
Vol 433-440 ◽  
pp. 6350-6355
Author(s):  
Shu Wang ◽  
Jia Xiang Sha ◽  
Gui Xiang Yu ◽  
Sheng Qin Yu ◽  
Sheng Chen Yu

One of difficultest problem is to find these important features (namely, effective features) for intrusion detection system (IDS). In order to resolve the problem, a method is presented in the paper. The so-called important features are these features in which much information for IDS is provided. The information provided by a feature is measured by mean-squared error (namely, variance) of the feature. The correlativity between two features is measured by covariance. If the covariance is equal to zero, the two features are non-correlative. On condition that covariance is equal to zero, the new feature making the variance maximum is gained. The new feature is called first important features searched in the paper. In the same approach, the second, third … important features are gained. Tests show that the method developed in the article and IDS based on the important features sought in the method are useful and available.


Intellectual intrusion detection system can merely be build if there is accessibility to an effectual data set. A high dimensional quality dataset that imitates the real time traffic facilitates training and testing an intrusion detection system. Since it is complex to scrutinize and extort knowledge from high-dimensional data, it is identified that feature selection is a preprocessing phase during attack defense. It increases the classification accuracy and reduces computational complexity by extracting important features from original data. Optimization schemes can be utilized on the dataset for selecting the features to find the appropriate subspace of features while preserving ample accuracy rate characterized by the inventive feature set. This paper aims at implementing the hybrid algorithm, ABC-LVQ. The bio-inspired algorithm, Artificial Bee Colony (ABC) is adapted to lessen the amount of features to build a dataset on which a supervised classification algorithm, Linear Vector Quantization (LVQ) is applied, thus achieving highest classification accuracy compared to k-NN and LVQ. The NSL-KDD dataset is scrutinized to learn the efficiency of the proposed algorithm in identifying the abnormalities in traffic samples within a specific network.


2020 ◽  
Author(s):  
Sriram Srinivasan ◽  
Shashank A ◽  
vinayakumar R ◽  
Soman KP

In the present era, cyberspace is growing tremendously and the intrusion detection system (IDS) plays a key role in it to ensure information security. The IDS, which works in network and host level, should be capable of identifying various malicious attacks. The job of network-based IDS is to differentiate between normal and malicious traffic data and raise an alert in case of an attack. Apart from the traditional signature and anomaly-based approaches, many researchers have employed various deep learning (DL) techniques for detecting intrusion as DL models are capable of extracting salient features automatically from the input data. The application of deep convolutional neural network (DCNN), which is utilized quite often for solving research problems in image processing and vision fields, is not explored much for IDS. In this paper, a DCNN architecture for IDS which is trained on KDDCUP 99 data set is proposed. This work also shows that the DCNN-IDS model performs superior when compared with other existing works.


2021 ◽  
Vol 19 (1) ◽  
pp. 2-20
Author(s):  
Piyush Kant Rai ◽  
Alka Singh ◽  
Muhammad Qasim

This article introduces calibration estimators under different distance measures based on two auxiliary variables in stratified sampling. The theory of the calibration estimator is presented. The calibrated weights based on different distance functions are also derived. A simulation study has been carried out to judge the performance of the proposed estimators based on the minimum relative root mean squared error criterion. A real-life data set is also used to confirm the supremacy of the proposed method.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 415
Author(s):  
Muhamad Sukri Hadi ◽  
Sukri Hadi Zaurah Mat Darus

This paper presents the performance of system identification for modeling the horizontal flexible plate system using artificial bee colony and recursive least square algorithms. Initially, the experimental rig of flexible plate was designed and fabricated with all edges clamped boundary condition at the horizontal position. Then, the instrumentation and data acquisition systems were integrated into the rig for acquiring the input-output vibration experimentally. The collected data in the experiment will be used later for modeling the dynamic system of horizontal flexible plate system using system identification. The effectiveness of the developed model will be validated using mean squared error, one step ahead prediction, correlation tests and pole zero diagram stability. The estimated of the developed models were found are acceptable and possible to be used as a platform of controller development for vibration suppression of the undesirable vibration in the flexible plate structure. It was found that the artificial bee colony algorithm has performed better in this study by achieving the lowest mean squared error, good correlation test and high stability in the pole zero diagram.  


2021 ◽  
Vol 13 (22) ◽  
pp. 4675
Author(s):  
William Yamada ◽  
Wei Zhao ◽  
Matthew Digman

An automatic method of obtaining geographic coordinates of bales using monovision un-crewed aerial vehicle imagery was developed utilizing a data set of 300 images with a 20-megapixel resolution containing a total of 783 labeled bales of corn stover and soybean stubble. The relative performance of image processing with Otsu’s segmentation, you only look once version three (YOLOv3), and region-based convolutional neural networks was assessed. As a result, the best option in terms of accuracy and speed was determined to be YOLOv3, with 80% precision, 99% recall, 89% F1 score, 97% mean average precision, and a 0.38 s inference time. Next, the impact of using lower-cost cameras was evaluated by reducing image quality to one megapixel. The lower-resolution images resulted in decreased performance, with 79% precision, 97% recall, 88% F1 score, 96% mean average precision, and 0.40 s inference time. Finally, the output of the YOLOv3 trained model, density-based spatial clustering, photogrammetry, and map projection were utilized to predict the geocoordinates of the bales with a root mean squared error of 2.41 m.


10.2196/27386 ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. e27386
Author(s):  
Qingyu Chen ◽  
Alex Rankine ◽  
Yifan Peng ◽  
Elaheh Aghaarabi ◽  
Zhiyong Lu

Background Semantic textual similarity (STS) measures the degree of relatedness between sentence pairs. The Open Health Natural Language Processing (OHNLP) Consortium released an expertly annotated STS data set and called for the National Natural Language Processing Clinical Challenges. This work describes our entry, an ensemble model that leverages a range of deep learning (DL) models. Our team from the National Library of Medicine obtained a Pearson correlation of 0.8967 in an official test set during 2019 National Natural Language Processing Clinical Challenges/Open Health Natural Language Processing shared task and achieved a second rank. Objective Although our models strongly correlate with manual annotations, annotator-level correlation was only moderate (weighted Cohen κ=0.60). We are cautious of the potential use of DL models in production systems and argue that it is more critical to evaluate the models in-depth, especially those with extremely high correlations. In this study, we benchmark the effectiveness and efficiency of top-ranked DL models. We quantify their robustness and inference times to validate their usefulness in real-time applications. Methods We benchmarked five DL models, which are the top-ranked systems for STS tasks: Convolutional Neural Network, BioSentVec, BioBERT, BlueBERT, and ClinicalBERT. We evaluated a random forest model as an additional baseline. For each model, we repeated the experiment 10 times, using the official training and testing sets. We reported 95% CI of the Wilcoxon rank-sum test on the average Pearson correlation (official evaluation metric) and running time. We further evaluated Spearman correlation, R², and mean squared error as additional measures. Results Using only the official training set, all models obtained highly effective results. BioSentVec and BioBERT achieved the highest average Pearson correlations (0.8497 and 0.8481, respectively). BioSentVec also had the highest results in 3 of 4 effectiveness measures, followed by BioBERT. However, their robustness to sentence pairs of different similarity levels varies significantly. A particular observation is that BERT models made the most errors (a mean squared error of over 2.5) on highly similar sentence pairs. They cannot capture highly similar sentence pairs effectively when they have different negation terms or word orders. In addition, time efficiency is dramatically different from the effectiveness results. On average, the BERT models were approximately 20 times and 50 times slower than the Convolutional Neural Network and BioSentVec models, respectively. This results in challenges for real-time applications. Conclusions Despite the excitement of further improving Pearson correlations in this data set, our results highlight that evaluations of the effectiveness and efficiency of STS models are critical. In future, we suggest more evaluations on the generalization capability and user-level testing of the models. We call for community efforts to create more biomedical and clinical STS data sets from different perspectives to reflect the multifaceted notion of sentence-relatedness.


Author(s):  
Soukaena Hassan Hashem

This chapter aims to build a proposed Wire/Wireless Network Intrusion Detection System (WWNIDS) to detect intrusions and consider many of modern attacks which are not taken in account previously. The proposal WWNIDS treat intrusion detection with just intrinsic features but not all of them. The dataset of WWNIDS will consist of two parts; first part will be wire network dataset which has been constructed from KDD'99 that has 41 features with some modifications to produce the proposed dataset that called modern KDD and to be reliable in detecting intrusion by suggesting three additional features. The second part will be building wireless network dataset by collecting thousands of sessions (normal and intrusion); this proposed dataset is called Constructed Wireless Data Set (CWDS). The preprocessing process will be done on the two datasets (KDD & CWDS) to eliminate some problems that affect the detection of intrusion such as noise, missing values and duplication.


2013 ◽  
Vol 824 ◽  
pp. 200-205 ◽  
Author(s):  
Susan Konyeha ◽  
Emmanuel A. Onibere

Computers are involved in every aspect of modern society and have become an essential part of our lives, but their vulnerability is of increasing concern to us. Security flaws are inherent in the operation of computers Most flaws are caused by errors in the process of software engineering or unforeseen mishaps and it is difficult to solve these problems by conventional methods. A radical way of constantly monitoring the system for newly disclosed vulnerabilities is required. In order to devise such a system, this work draws an analogy between computer immune systems and the human immune system. The computer immune system is the equivalent of the human immune system. The primary objective of this paper is to use an intrusion detection system in the design and implementation of a computer immune system that would be built on the framework of the human immune system. This objective is successfully realized and in addition a prevention mechanism using the windows IP Firewall feature has been incorporated. Hence the system is able to perform intrusion detection and prevention. Data was collected about events occurring in a computer network that violate predefined security policy, such as attempts to affect the confidentiality, integrity or its availability using Snort rules for known attacks and adaptive detection for the unknown attacks. The system was tested using real-time data and Intrusion Detection evaluation (IDEVAL) Department of Defense Advanced Research Projects Agency (DARPA) data set. The results were quite encouraging as few false positive were recorded.


Sign in / Sign up

Export Citation Format

Share Document