scholarly journals Moving Pearl Vortices in Thin-Film Superconductors

2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Vladimir Kogan ◽  
Norio Nakagawa

The magnetic field hz of a moving Pearl vortex in a superconducting thin-film in (x,y) plane is studied with the help of the time-dependent London equation. It is found that for a vortex at the origin moving in +x direction, hz(x,y) is suppressed in front of the vortex, x>0, and enhanced behind (x<0). The distribution asymmetry is proportional to the velocity and to the conductivity of normal quasiparticles. The vortex self-energy and the interaction of two moving vortices are evaluated.

2021 ◽  
Author(s):  
Jens Pomoell ◽  
Emilia Kilpua ◽  
Daniel Price ◽  
Eleanna Asvestari ◽  
Ranadeep Sarkar ◽  
...  

&lt;p&gt;Characterizing the detailed structure of the magnetic field in the active corona is of crucial importance for determining the chain of events from the formation to the destabilisation and subsequent eruption and propagation of coronal structures in the heliosphere. A comprehensive methodology to address these dynamic processes is needed in order to advance our capabilities to predict the properties of coronal mass ejections (CMEs) in interplanetary space and thereby for increasing the accuracy of space weather predictions. A promising toolset to provide the key missing information on the magnetic structure of CMEs are time-dependent data-driven simulations of active region magnetic fields. This methodology permits self-consistent modeling of the evolution of the coronal magnetic field from the emergence of flux to the birth of the eruption and beyond.&amp;#160;&lt;/p&gt;&lt;p&gt;In this presentation, we discuss our modeling efforts in which time-dependent data-driven coronal modeling together with heliospheric physics-based modeling are employed to study and characterize CMEs, in particular their magnetic structure, at various stages in their evolution from the Sun to Earth.&amp;#160;&lt;/p&gt;


2007 ◽  
Vol 85 (8) ◽  
pp. 879-885
Author(s):  
X -X Chen ◽  
J Xue

A homonuclear linear [Formula: see text] coupling spin cluster with the middle particle driven by an external time-dependent magnetic field is investigated by using the method of algebraic dynamics. The exact analytical solutions of the time-dependent Schrodinger equation of the spin cluster system are derived and employed to study the geometric phase. An alternative expression of the geometric phase in each eigenstate is obtained. It is shown that the geometric phase is related to the external magnetic-field parameter θ (the angle between the magnetic field and the Z axis) and the effective coupling strength Jn. Based on the relation, how the geometric phase depends on the coupling strength Jn in different reducible subspace is discussed.PACS Nos.: 33.20.Wr, 03.65.Fd, 03.65.Vf


2019 ◽  
Vol 33 (12) ◽  
pp. 1950113 ◽  
Author(s):  
I. M. Pazukha ◽  
Y. O. Shkurdoda ◽  
A. M. Chornous ◽  
L. V. Dekhtyaruk

A series of thin-film nanocomposites based on ferromagnetic metal Co and insulator SiO were prepared using an electron-beam method. The magnetoresistive and magnetic properties of these structures deposited at room temperature and then annealed to 700 K were investigated. The results showed that at the Co concentration 40 [Formula: see text]x [Formula: see text] 60 at.%, thin-film nanocomposites exhibit magnetoresistance (MR) that is conditional on spin-dependent tunnelling of electrons. This range of concentrations corresponds to the prepercolation area according to the magnetic investigations. For samples with x [Formula: see text] 70 at.%, the anisotropic character of MR peculiar to the homogeneous ferromagnetic materials appears. According to the magnetic properties study, this range of concentrations corresponds to the area after transition through the percolation threshold. The annealing process in temperature range from 300 K to 700 K in the magnetic field slightly influenced the magnetoresistive properties of the thin-film nanocomposites based on Co and SiO for all range of concentrations.


2015 ◽  
Vol 29 (25n26) ◽  
pp. 1542036
Author(s):  
Wonbae Bang ◽  
W. Teizer ◽  
K. K. D. Rathnayaka ◽  
I. F. Lyuksyutov ◽  
D. G. Naugle

We present results on electrochemical fabrication of arrays of magnetic nanostripes atop a Sn film covered with an insulating Ge layer. We also report its transport properties and superconducting [Formula: see text]. The transport properties demonstrate strong hysteresis as a function of the magnetic field.


2006 ◽  
Vol 20 (29) ◽  
pp. 1847-1852
Author(s):  
ALI IHSAN DEMIREL ◽  
SALIM ORAK

The resistive properties and activation energy of YBa 2 Cu 3 O 7-ρ ( YBCO ) superconducting materials change in magnetic field. It is explained that magnetoresistive behavior in terms of the presence of two-dimensional vortices being pinned effectively when they are perpendicular to the CuO 2 planes and an exponential behavior of the activation energy versus the applied field was obtained. The resulting activation energies ranging from 1 to 5 Tesla were attributed to inter-granular flux creep process.


Sign in / Sign up

Export Citation Format

Share Document