scholarly journals Deposition of Potentially Toxic Metals in the Soil from Surrounding Cement Plants in a Karst Area of Southeastern Brazil

Conservation ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 137-150
Author(s):  
Thiago Augusto da Costa Silva ◽  
Marcos de Paula ◽  
Washington Santos Silva ◽  
Gustavo Augusto Lacorte

Cement factories are the main sources of environmental pollutants among the different industrial activities, including soil contamination by potentially toxic metals. The karst region of Southeastern Brazil is known for the implementation of large cement producing facilities. This study aims to evaluate whether there is an increase in the concentration of PTM in the soil surrounding the cement plants and to estimate their harmfulness to both local human population and environment. In total, 18 soil samples were collected from the surroundings of three cement plants as well as four soil samples from areas outside the influence of cement plants and concentration of the following potentially toxic metals (PTM) were estimated: Cd, Pb, Co, Cu, Cr, Mn, Ni, and Zn. The results revealed that all PTM concentrations from cement plant surroundings were significantly higher than PTM concentrations from control areas and no PTM concentrations from CPS or CA soil samples exceeded national and global contamination thresholds. However, Igeo Index indicated low level soil contamination by Pb, Cu, and Cr, as well as high levels for Co. We could not verify significant non-carcinogenic risk to health for any soil sample, but carcinogenic risk analysis revealed different levels of carcinogenic risk among the sampled locations, for both adults and children. Our results indicate that exclusively evaluating the concentration of potentially toxic metals is not enough to verify the potential harmful effects of cement production for the surrounding population. Here we evidence that additional indices, based on both contamination indices and health risk assessments, should be considered for better evaluation of the impacts of cement production activity.

2021 ◽  
Author(s):  
Thiago Augusto da Costa e Silva ◽  
Marcos de Paula ◽  
Washington Santos Silva ◽  
Gustavo Augusto Lacorte

Abstract Cement factories are the main sources of environmental pollutants among the different industrial activities, including soil contamination by potentially toxic metals and the Karst region of Southeastern Brazil is known for the implementation of large cement producing facilities. This study aims to evaluate whether there is an increase in the concentration of PTM in the soil surrounding the cement plants and to estimate their harmfulness to both local human population and environment. In total, 18 soil samples were collected from the surroundings of three cement plants as well as four soil samples from areas outside the influence of cement plants and concentration of the following potentially toxic metals (PTM) were estimated: Cd, Pb, Co, Cu, Cr, Mn, Ni, and Zn. The results revealed that all PTM concentrations from cement plant surroundings were significantly higher than PTM concentrations from control areas and no PTM concentrations from CPS or CA soil samples exceeded national and global contamination thresholds. However, Igeo Index indicated low level soil contamination by Pb, Cu and Cr and high levels for Co. We could not verify significant Non-carcinogenic risk to health for any soil sample, but carcinogenic risk analysis revealed different levels of carcinogenic risk among the sampled locations, for both adults and children. Our results indicate that exclusively evaluating the concentration of potentially toxic metals is not enough to verify the potential harmful effects of cement production for the surrounding population. Here we evidence that additional indices, based on both contamination indices and health risk assessments, should be considered for better evaluation of the impacts of cement production activity.


2021 ◽  
Author(s):  
Mohammed Alsafran ◽  
Kamal Usman ◽  
Hareb Al Jabri ◽  
Muhammad Rizwan

Potentially toxic environmental contaminants, including metals and metalloids, are commonly found in emerging economies. At high concentrations, elements such as As, Cr, and Ni can be hazardous and may lead to various health problems in humans, including cancer. The current study measured As, Cd, Cr, Cu, Ni, Pb, V, and Zn concentrations in agricultural soils. Pollution levels and potential negative impacts on human and environmental health were determined using the United States Environmental Protection Agency (USEPA) standard methodologies. According to the study’s findings, the studied element concentrations descended in the following order: Zn > Cr > V > Ni > As > Cu > Pb > Cd. Of these, As (27.6 mg/kg), Cr (85.7 mg/kg), Ni (61.9 mg/kg), and Zn (92.3 mg/kg) concentrations were higher than average world background levels. Each of these elements also had an enrichment factor (EF > 1), indicating their anthropogenic origin. The combined pollution load index (PLI > 1) and geo-accumulation index (Igeo) range values of −0.2–2.5 further indicated that the soil was polluted up to 58%. However, the ecological risk factor (Er ≤ 40.6) and potential ecological risk index (PERI = 79.6) suggested low ecological risk. A human health risk evaluation showed that only As, with a hazard index (HI) of 1.3, posed a non-carcinogenic risk to infants. Additionally, As, Cr, and Ni, with total carcinogenic risk (TCR) values of 1.18 × 10−4 and 2.06 × 10−4 for adults and children, respectively, proved carcinogenic to both age groups. The elements’ carcinogenic risk (CR) potential descended in the following order: Ni > As > Cr. Additionally, for both adults and children, oral ingestion is the most likely exposure pathway. Our findings support the need for closer monitoring of potentially toxic metals and metalloids levels in cultivated soils and farm produce in Qatar.


2014 ◽  
Vol 144 ◽  
pp. 409-420 ◽  
Author(s):  
Marta Mileusnić ◽  
Benjamin Siyowi Mapani ◽  
Akalemwa Fred Kamona ◽  
Stanko Ružičić ◽  
Isaac Mapaure ◽  
...  

Author(s):  
Akash ◽  
Vinay Mohan Pathak ◽  
Neelesh Babu ◽  
Navneet

This chapter describes how pollutants are increasing in the environment due to the rapid industrialization all over the world. The environment has been contaminated with large number of organic and inorganic pollutants. The organic pollutants are largely anthropogenic and are introduced to the environment in many ways. Soil contamination with toxic metals, such as Cd, Pb, Cr, Zn, Ni, etc., as a result of worldwide industrialization has increased noticeably within the past few years. Bioremediation is a process for reclaiming the environment which has been polluted with the help of living forms. It is an option that offers the possibility to destroy various contaminants using natural biological activity and to degrade the environmental contaminants into less toxic forms. It is also applicable for the heavy metal hazards. It has proven to be cheap and efficient than other techniques. This chapter focuses on the possible trends in the remediation of environment pollutants with the help of plants as well as microbes.


Toxics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 35
Author(s):  
Mohammed Alsafran ◽  
Kamal Usman ◽  
Hareb Al Jabri ◽  
Muhammad Rizwan

In recent years, Qatar has witnessed exponential growth in the human population, urbanization, and increased anthropogenic activities, including agriculture. Potentially toxic environmental contaminants, including metals and metalloids, are commonly found in emerging economies. At high concentrations, elements such as As, Cr, and Ni can be hazardous and may lead to various health problems in humans, including cancer. The current study measured As, Cd, Cr, Cu, Ni, Pb, V, and Zn concentrations in agricultural soils. Pollution levels and potential negative impacts on human and environmental health were determined using the United States Environmental Protection Agency (USEPA) standard methodologies. According to the study’s findings, the studied element concentrations descended in the following order: Zn > Cr > V > Ni > As > Cu > Pb > Cd. Of these, As (27.6 mg/kg), Cr (85.7 mg/kg), Ni (61.9 mg/kg), and Zn (92.3 mg/kg) concentrations were higher than average world background levels. Each of these elements also had an enrichment factor (EF > 1), indicating their anthropogenic origin. The combined pollution load index (PLI > 1) and geo-accumulation index (Igeo) range values of −0.2–2.5 further indicated that the soil was up to 58% polluted. However, the ecological risk factor (Er ≤ 40.6) and potential ecological risk index (PERI = 79.6) suggested low ecological risk. A human health risk evaluation showed that only As, with a hazard index (HI) of 1.3, posed a noncarcinogenic risk to infants. Additionally, As, Cr, and Ni, with total carcinogenic risk (TCR) values of 1.18 × 10−4 and 2.06 × 10−4 for adults and children, respectively, proved carcinogenic to both age groups. The elements’ carcinogenic risk (CR) potential descended in the following order: Ni > As > Cr. Additionally, for both adults and children, oral ingestion is the most likely exposure pathway. Our findings support the need for closer monitoring of potentially toxic metals and metalloids levels in cultivated soils and farm produce in Qatar. Reducing the elements’ bioavailability in soil and developing innovative remediation technologies is needed to limit potential risks to human health. Further studies on As, Cr, and Ni gastrointestinal bioaccessibilities are needed to fully understand the effects after long-term exposure and the cancer-causing potential of these elements over a lifetime.


2019 ◽  
Vol 70 (7) ◽  
pp. 2392-2397 ◽  
Author(s):  
Violeta-Monica Radu ◽  
Alexandru Anton Ivanov ◽  
Petra Ionescu ◽  
Gyorgy Deak ◽  
Elena Diacu ◽  
...  

Increasing anthropogenic influences on the environment has caused negative changes in natural ecosystems and soil contamination with potentially toxic metals has become a worrying issue at global level, due to the negative impact on the environment and human health. For the purpose of assessing soil contamination in the riparian areas of the Lower Danube River, a number of 144 soil samples were collected twice a year, in the period of June 2013 � December 2016, from 9 monitoring locations, from 0.05 m and 0.3 m depths, and the following indicators: Cr, Cu, Mn, Ni, Pb, Zn, including Ca, Mg, Corg, SO42- and humus content have been monitored. The soil was sampled, conserved and analysed according to the European standards in force. Metal concentrations were determined using flame (FAAS) and graphite furnace (GFAAS) atomic absorption spectrometry after �aqua regia� digestion of dried, homogenised and 0.5 mm sieved soil sub-samples. Comparing the average concentration values of the analysed potentially toxic metals, a decreasing tendency following the order Cr]Pb]Ni]Cu]Zn]Mn was observed and by reporting the average values at the normal limits, the order Zn]Cu]Mn]Ni]Pb]Cr of magnitude was obtained. To investigate possible correlations and interdependencies of potentially toxic metals content in the riparian soil, multivariate statistical methods were used. After applying Principal Component Analysis (PCA), 3 main components were identified, with a combined share of about 74 % of the original data-set variance. It was observed that during the monitoring period the average values of the all monitored elements from the studied soils were slightly below the normal reference values, according to the national legislation.


2020 ◽  
Vol 12 (1) ◽  
pp. 568-579
Author(s):  
Liping Mo ◽  
Yongzhang Zhou ◽  
Gnanachandrasamy Gopalakrishnana ◽  
Xingyuan Li

AbstractSihui city (South China) is much affected by nasopharyngeal carcinoma (NPC). To investigate the relationships between the toxic metals in soil and NPC incidence in Sihui, 119 surface soil samples were collected from agricultural fields and analyzed. The soil As–Cr contents in Longjiang (high-incidence area) are significantly lower than those in Weizheng and Jianglin (low-incidence areas), whereas the soil Pb content in Longjiang is significantly higher than that in Weizheng. The Nemerow pollution indices (PIN) of soils decrease in the order of Jianglin > Weizheng > Longjiang. The enrichment factor (EF) of Cd indicates that the Cd enrichment is contributed by human activities. Potential toxic metal-related ecological risk values decrease in the order of Jianglin > Weizheng > Longjiang. The mean hazard index (HI) value of Longjiang was lower than those of Weizheng and Jianglin. There are no adverse noncarcinogenic health effects of soil toxic metals to adults in the study areas. Carcinogenic risks of As and Cr via ingestion and dermal contact and total carcinogenic risk are within the warning range, from 10−6 to 10−4. Hence, we suggest that toxic metals in the soil may not be major geochemical carcinogenic factors of high NPC incidence in Sihui.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 713
Author(s):  
Ahmed S. Abuzaid ◽  
Hossam S. Jahin ◽  
Amany A. Asaad ◽  
Mohamed E. Fadl ◽  
Mohamed A. E. AbdelRahman ◽  
...  

The reduced availability of water resources in Egypt has imposed the need to intensify the use of wastewater for crop irrigation in the alluvial soils of anthropogenic origin. Relevant effects can derive from contents of potentially toxic metals (PTMs) in supply resources soils, crops, and groundwater in these areas. For this reason the PTM content has to be monitored to evaluate and minimize health hazards. Therefore, in this context, two areas of the SE Nile Delta subjected to 25 year of wastewater irrigation, using agricultural drainage water (ADW) and mixed wastewater (MWW) were chosen and compared with a nearby site irrigated with Nile freshwater (NFW). At each of the three sites, ten samples of irrigation water, topsoil, berseem clover (Trifolium alexandrinum L.) plants, and seven groundwater samples were collected and analyzed for Cr, Co, Cu, Pb, Ni, and Zn. Results indicate that the total contents of Co, Cu, Ni, and Zn in soils collected from the three sampling sites and Pb in the MWW-irrigated soils were higher than their average natural contents in the earth’s crust, indicating potential risks. The DTPA-extractable contents of Cu in the three sites, in addition to Pb and Zn in the MWW-irrigated soils, exceeded the safe limits. The MWW-irrigated soils showed a considerable degree of metal contamination, while the NFW- and ADW-irrigated soils showed moderate and low levels of contamination, respectively. The contents of the six PTMs in the three sites showed low individual ecological risks, except for Pb in the MWW-irrigated soils that showed a moderate risk; however, the overall ecological risk remained low in all samples. The values of Co, Cu, and Ni in berseem shoot in addition to Pb from the MWW-irrigated soils were over the maximum permissible levels for animal feeding. Values of root-to-shoot translocation factor were lower than 1.0 for Cr, Co and Ni but higher than 1.0 for Cu, Pb, and Zn. Berssem plant is a good candidate for phytofiltration of Cr, Co and Ni, while for extracting Cu, Pb and Zn from polluted soils. The groundwater samples collected from the three sampling sites showed lower metal concentrations than the safe limits for drinking standards. Further remediation studies should be taken into account to alleviate potential environmental and health-related risks when using supply resources different from freshwater.


Sign in / Sign up

Export Citation Format

Share Document