scholarly journals Spatial distribution and risk assessment of toxic metals in agricultural soils from endemic nasopharyngeal carcinoma region in South China

2020 ◽  
Vol 12 (1) ◽  
pp. 568-579
Author(s):  
Liping Mo ◽  
Yongzhang Zhou ◽  
Gnanachandrasamy Gopalakrishnana ◽  
Xingyuan Li

AbstractSihui city (South China) is much affected by nasopharyngeal carcinoma (NPC). To investigate the relationships between the toxic metals in soil and NPC incidence in Sihui, 119 surface soil samples were collected from agricultural fields and analyzed. The soil As–Cr contents in Longjiang (high-incidence area) are significantly lower than those in Weizheng and Jianglin (low-incidence areas), whereas the soil Pb content in Longjiang is significantly higher than that in Weizheng. The Nemerow pollution indices (PIN) of soils decrease in the order of Jianglin > Weizheng > Longjiang. The enrichment factor (EF) of Cd indicates that the Cd enrichment is contributed by human activities. Potential toxic metal-related ecological risk values decrease in the order of Jianglin > Weizheng > Longjiang. The mean hazard index (HI) value of Longjiang was lower than those of Weizheng and Jianglin. There are no adverse noncarcinogenic health effects of soil toxic metals to adults in the study areas. Carcinogenic risks of As and Cr via ingestion and dermal contact and total carcinogenic risk are within the warning range, from 10−6 to 10−4. Hence, we suggest that toxic metals in the soil may not be major geochemical carcinogenic factors of high NPC incidence in Sihui.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
O. C. Ekhator ◽  
N. A. Udowelle ◽  
S. Igbiri ◽  
R. N. Asomugha ◽  
Z. N. Igweze ◽  
...  

Objective. Street-vended foods offer numerous advantages to food security; nevertheless, the safety of street food should be considered. This study has investigated the level of potential toxic metal (Pb, Cd, Hg, Sb, Mn, and Al) contamination among street-vended foods in Benin City and Umunede. Methods. Twenty street food samples were purchased from vendors at bus stops. Metals were analyzed with atomic absorption spectrophotometry. The methods developed by the US EPA were employed to evaluate the potential health risk of toxic metals. Results. The concentrations of the toxic metals in mg/kg were in the range of Pb (0.014–1.37), Cd (0.00–0.00017), Hg (0.00–0.00014), Sb (0.00–0.021), Mn (0.00–0.012), and Al (0.00–0.22). All the toxic metals except Pb were below permissible limit set by WHO, EU, and USEPA. The daily intake, hazard quotient, and hazard index of all toxic metals except for Pb in some street foods were below the tolerable daily intake and threshold value of 1, indicating an insignificant health risk. Total cancer risk was within the priority risk level of 1.0E-04 but higher than the acceptable risk level of 1E-06. Conclusion. Consumption of some of these street foods is of public health concern.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dingwen Lin ◽  
Junning Wang ◽  
Zhezhe Cui ◽  
Jing Ou ◽  
Liwen Huang ◽  
...  

Abstract Background Tuberculosis (TB) is caused by a bacterium called Mycobacterium tuberculosis (Mtb). China is the third in top 8 high TB burden countries and Guangxi is one of the high incidence areas in South China. Determine bacterial factors that affected TB incidence rate is a step toward Ending the TB epidemic. Results Genomes of M. tuberculosis cultures from a relatively high and low incidence region in Guangxi have been sequenced. 347 of 358(96.9%) were identified as M. tuberculosis. All the strains belong to Lineage 2 and Lineage 4, except for one in Lineage 1. We found that the genetic structure of the M. tuberculosis population in each county varies enormously. Low incidence rate regions have a lower prevalence of Beijing genotypes than other regions. Four isolates which harbored mutT4-48 also had mutT2-58 mutations. It is suggested that strains from the ancestors of modern Beijing lineage is circulating in Guangxi. Strains of modern Beijing lineage (OR=2.04) were more likely to acquire drug resistances than Lineage 4. Most of the lineage differentiation SNPs are related to cell wall biosynthetic pathways. Conclusions These results provided a higher resolution to better understand the history of transmission of M. tuberculosis from/to South China. And the incidence rate of tuberculosis might be affected by bacterial population structure shaped by demographic history. Our findings also support the hypothesis that Modern Beijing lineage originated in South China.


Author(s):  
U. Rilwan ◽  
A. A. Abbas ◽  
S. Muhammad

Swampy agricultural soils could be contaminated as a result of accumulation of heavy metals through emission from industrial areas, mines tailings, metal wastes, gasoline, paints, fertilizers, manure, sewage sludge, pesticide, waste water irrigation, coal combustion residue, spillage of petrochemicals and atmospheric deposition. This study aimed at evaluating the carcinogenic and non-carcinogenic risk of the study area using X-Ray fluoroscopy. The results shows that, mean concentration level in the area was in decreasing order Ni(525) > Cu(515.9) > Zn(367.6) > Cr(336.6) > Cd(260.9) > Pb(219.5) > As(18.9). The Hazard Quotient (HQ) was all recorded to be low except ingestion adult which is higher than unity. The Hazard Index (HI) was also recorded to be 2.3 a value greater than one (>>1). This makes non-carcinogenic effects significant to the population and poses serious effects in the area under study. The total excess life cancer risk were found to be (5.0 x 10-2), a value greater than that of U.S (1.0x10-4 to 1.0x10-6) and above that of South Africa (5.0x10-6). This implies that there is a probability that one person in 1,000 may be affected. Regular monitoring and evaluation of the soils and the crops cultivated at the sample locations is recommended.


Toxics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 35
Author(s):  
Mohammed Alsafran ◽  
Kamal Usman ◽  
Hareb Al Jabri ◽  
Muhammad Rizwan

In recent years, Qatar has witnessed exponential growth in the human population, urbanization, and increased anthropogenic activities, including agriculture. Potentially toxic environmental contaminants, including metals and metalloids, are commonly found in emerging economies. At high concentrations, elements such as As, Cr, and Ni can be hazardous and may lead to various health problems in humans, including cancer. The current study measured As, Cd, Cr, Cu, Ni, Pb, V, and Zn concentrations in agricultural soils. Pollution levels and potential negative impacts on human and environmental health were determined using the United States Environmental Protection Agency (USEPA) standard methodologies. According to the study’s findings, the studied element concentrations descended in the following order: Zn > Cr > V > Ni > As > Cu > Pb > Cd. Of these, As (27.6 mg/kg), Cr (85.7 mg/kg), Ni (61.9 mg/kg), and Zn (92.3 mg/kg) concentrations were higher than average world background levels. Each of these elements also had an enrichment factor (EF > 1), indicating their anthropogenic origin. The combined pollution load index (PLI > 1) and geo-accumulation index (Igeo) range values of −0.2–2.5 further indicated that the soil was up to 58% polluted. However, the ecological risk factor (Er ≤ 40.6) and potential ecological risk index (PERI = 79.6) suggested low ecological risk. A human health risk evaluation showed that only As, with a hazard index (HI) of 1.3, posed a noncarcinogenic risk to infants. Additionally, As, Cr, and Ni, with total carcinogenic risk (TCR) values of 1.18 × 10−4 and 2.06 × 10−4 for adults and children, respectively, proved carcinogenic to both age groups. The elements’ carcinogenic risk (CR) potential descended in the following order: Ni > As > Cr. Additionally, for both adults and children, oral ingestion is the most likely exposure pathway. Our findings support the need for closer monitoring of potentially toxic metals and metalloids levels in cultivated soils and farm produce in Qatar. Reducing the elements’ bioavailability in soil and developing innovative remediation technologies is needed to limit potential risks to human health. Further studies on As, Cr, and Ni gastrointestinal bioaccessibilities are needed to fully understand the effects after long-term exposure and the cancer-causing potential of these elements over a lifetime.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fereshteh Karimi ◽  
Nabi Shariatifar ◽  
Mohammad Rezaei ◽  
Mahsa Alikord ◽  
Majid Arabameri

AbstractThe current study aims to investigate the levels of the toxic metal in agricultural products (legumes, wheat, and potato) collected in Markazi province, Iran, and human health risk by using inductively coupled plasma - optical emission spectrometry (ICP-OES). The levels of arsenic (As) and cadmium (Cd) in all samples were lower than the limit of detection (LOD), while the level of Cd in potato samples was lower than the maximum permisible level (MPL) of the European commission (EC). The non-carcinogenic and carcinogenic risk assessment by direct ingestion of agricultural products was calculated using the United States Environmental Protection Agency (USEPA) method. The highest mean of toxic metals was observed for lead (Pb) in legume samples (562.17 μg kg− 1). Mercury (Hg) and Pb levels in all samples were higher than LOD, while Pb level in wheat samples were lower than of EC. The rank order of Hg and Pb levels in all samples based on target hazard quotient (THQ) value was wheat> potato>legume. The THQ index of Hg and Pb by the deterministic method in wheat was 1.37 and 0.454; in potato 0.139 and 0.104; in legume 0.092 and 0.41, respectively. The carcinogenic risk index was at an acceptable range. The high hazard index values were estimated and the THQ index for Hg in wheat suggests a non-negligible health risk.


Author(s):  
A. J. Alhassan ◽  
I. U. Muhammad ◽  
M. S. Sule ◽  
M. A. Dangambo ◽  
A. M. Gadanya ◽  
...  

Correlational study and evaluation of pollution indices of toxic metals distribution in soil and crops of a population are imperative for assessing the risk of chronic diseases associated with these metals. Correlational analysis for the distribution of; lead (Pb), cadmium (Cd), chromium (Cr) and mercury (Hg) in soil (S), bean (B) and maize (M) was conducted around Bunkure (BKR), Danbatta (DBT), Gwarzo (GRZ), Ungogo (UGG) and Wudil (WDL) as sampling zones around Kano State, Nigeria. The samples were collected from farm harvests in each of the sampling zones. The metal concentration was determined using atomic absorption spectrometry (AAS). Results in mg/kg across the local governments indicate respective ranges for Hg, Pb, Cd, and Cr of; 0.33 - 3.13, 0.14 - 0.84, 0.02 - 0.05 and 0.01- 0.49 in soil, 0.04-4.23, 0.06-0.23, 0.02-0.04 and 0.00-0.10 in maize and 0.20-4.23, 0.16-0.19, 0.03-0.04 and 0.00-0.03 in beans. Although with the exception of mercury, the ranges of the toxic metals are within the tolerable range set by International Standard Tolerable Limits and European Regulatory Standard. Potential hazard may be speculated because the detected levels are on higher tolerable ranges. A higher level of mercury in almost all the samples indicates potential hazards associated with human activities in those areas. A strong positive correlation between soils samples in respect to the level of some of the toxic metal may suggest a common nature of the soil, while the negative correlation may be due to variation in agrochemicals in-use. For the pollution load index, Wudil had the highest soil pollution load index for Hg (3.13 ± 0.16), Cd (1.6×10-2 ± 0.01) and Cr (4.9×10-3 ± 0.01), while Ungogo had the highest pollution load for Pb. Also, all grains within the study zones exhibited a positive transfer factor, except Cr in Bunkure, Danbatta and Gwarzo. It may be concluded that crops grown in those areas may bioaccumulate some of these toxic metals, thereby incorporating them into the food chain, hence potential health risk.


Author(s):  
Uchenna Okereafor ◽  
Mamookho Makhatha ◽  
Lukhanyo Mekuto ◽  
Nkemdinma Uche-Okereafor ◽  
Tendani Sebola ◽  
...  

The problem of environmental pollution is a global concern as it affects the entire ecosystem. There is a cyclic revolution of pollutants from industrial waste or anthropogenic sources into the environment, farmlands, plants, livestock and subsequently humans through the food chain. Most of the toxic metal cases in Africa and other developing nations are a result of industrialization coupled with poor effluent disposal and management. Due to widespread mining activities in South Africa, pollution is a common site with devastating consequences on the health of animals and humans likewise. In recent years, talks on toxic metal pollution had taken center stage in most scientific symposiums as a serious health concern. Very high levels of toxic metals have been reported in most parts of South African soils, plants, animals and water bodies due to pollution. Toxic metals such as Zinc (Zn), Lead (Pb), Aluminium (Al), Cadmium (Cd), Nickel (Ni), Iron (Fe), Manganese (Mn) and Arsenic (As) are major mining effluents from tailings which contaminate both the surface and underground water, soil and food, thus affecting biological function, endocrine systems and growth. Environmental toxicity in livestock is traceable to pesticides, agrochemicals and toxic metals. In this review, concerted efforts were made to condense the information contained in literature regarding toxic metal pollution and its implications in soil, water, plants, animals, marine life and human health.


2021 ◽  
pp. 317-323
Author(s):  
Levent Bat ◽  
Elif Arici ◽  
Ayşah Öztekin ◽  
Fatih Şahin

Introduction. Toxic metals in fish, even at low levels, have negative consequences for human health. Even essential metals pose a health threat if consumed in certain quantities. Mercury, cadmium, and lead are the most frequent metals containing in fish. The research objective was to inspect the quality of aquaculture fish found in most major grocery chains across Turkey. Study objects and methods. The present research featured the quantities of Zn, Fe, Cu, Al, Pb, Hg, and Cd in Turkish salmon. The sampling took place between February and June 2019. The cumulative carcinogenic and non-carcinogenic risk for consumers was evaluated based on trace element levels in a prospective health risk assessment using the U.S. EPA model of lifetime exposure. Results and discussion. Fe proved to be the most abundant element in fish fillets, followed by Zn and Cu. Other elements appeared to be far below the permissible values, namely Al ≤ 0.5, Cd ≤ 0.02, Pb, and Hg ≤ 0.05. All the trace elements detected in Turkish salmon were below the reference dose values. The percent contribution to total risk by Fe, Cu, and Zn were 34.20, 24.80, and 41.01%, respectively. The hazard index was ≤ 1. The contamination of aquaculture fish fillet proved insignificant, and the carcinogenic risk was entirely negligible. Conclusion. The research revealed no hazardous trace elements, and their cumulative effects were not indicated in the hazardous index.


2019 ◽  
Vol 26 (25) ◽  
pp. 26000-26014 ◽  
Author(s):  
Luciano A. Gomes ◽  
Nuno Gabriel ◽  
Licínio M. Gando-Ferreira ◽  
José C. Góis ◽  
Margarida J. Quina

2020 ◽  
Vol 5 (1) ◽  
pp. 166-175
Author(s):  
Fatima Haque ◽  
Yi Wai Chiang ◽  
Rafael M. Santos

AbstractCalcium- and magnesium-rich alkaline silicate minerals, when applied to soil, can aid in carbon dioxide sequestration via enhanced weathering. The weathering of these silicate minerals is also associated with the release of heavy metals such as Ni and Cr, depending on the composition of the parent rock, and also labile Si. This paper critically analyses the risk associated with the release of Ni, Cr, and Si from alkaline silicate minerals as a result of enhanced weathering to evaluate its potential to be applied as a soil amendment. Based on the available data in the literature, this study evaluates the soil contamination level and quantifies the risk these elements pose to human health as well as the environment. To assess these potential threat levels, the geoaccumulation index was applied, along with the method recommended by the US Environmental Protection Agency for health risk assessment. The main findings of this study indicate the potential release of Ni, Cr, and Si to exceed the soil quality guideline value. The geochemical index suggests that the analyzed samples are in the class 0–3 and represents sites that lie between uncontaminated zones to highly contaminated zones. The hazard index value for Ni and Cr is greater than unity, which suggests that Ni and Cr release poses a non-carcinogenic risk. The probability of labile Si concentration in the soil to exceed the critical value is found to be 75%.


Sign in / Sign up

Export Citation Format

Share Document