scholarly journals Ecological and Health Risks Assessment of Potentially Toxic Metals and Metalloids Contaminants: A Case Study of Agricultural Soils in Qatar

Toxics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 35
Author(s):  
Mohammed Alsafran ◽  
Kamal Usman ◽  
Hareb Al Jabri ◽  
Muhammad Rizwan

In recent years, Qatar has witnessed exponential growth in the human population, urbanization, and increased anthropogenic activities, including agriculture. Potentially toxic environmental contaminants, including metals and metalloids, are commonly found in emerging economies. At high concentrations, elements such as As, Cr, and Ni can be hazardous and may lead to various health problems in humans, including cancer. The current study measured As, Cd, Cr, Cu, Ni, Pb, V, and Zn concentrations in agricultural soils. Pollution levels and potential negative impacts on human and environmental health were determined using the United States Environmental Protection Agency (USEPA) standard methodologies. According to the study’s findings, the studied element concentrations descended in the following order: Zn > Cr > V > Ni > As > Cu > Pb > Cd. Of these, As (27.6 mg/kg), Cr (85.7 mg/kg), Ni (61.9 mg/kg), and Zn (92.3 mg/kg) concentrations were higher than average world background levels. Each of these elements also had an enrichment factor (EF > 1), indicating their anthropogenic origin. The combined pollution load index (PLI > 1) and geo-accumulation index (Igeo) range values of −0.2–2.5 further indicated that the soil was up to 58% polluted. However, the ecological risk factor (Er ≤ 40.6) and potential ecological risk index (PERI = 79.6) suggested low ecological risk. A human health risk evaluation showed that only As, with a hazard index (HI) of 1.3, posed a noncarcinogenic risk to infants. Additionally, As, Cr, and Ni, with total carcinogenic risk (TCR) values of 1.18 × 10−4 and 2.06 × 10−4 for adults and children, respectively, proved carcinogenic to both age groups. The elements’ carcinogenic risk (CR) potential descended in the following order: Ni > As > Cr. Additionally, for both adults and children, oral ingestion is the most likely exposure pathway. Our findings support the need for closer monitoring of potentially toxic metals and metalloids levels in cultivated soils and farm produce in Qatar. Reducing the elements’ bioavailability in soil and developing innovative remediation technologies is needed to limit potential risks to human health. Further studies on As, Cr, and Ni gastrointestinal bioaccessibilities are needed to fully understand the effects after long-term exposure and the cancer-causing potential of these elements over a lifetime.

2021 ◽  
Author(s):  
Mohammed Alsafran ◽  
Kamal Usman ◽  
Hareb Al Jabri ◽  
Muhammad Rizwan

Potentially toxic environmental contaminants, including metals and metalloids, are commonly found in emerging economies. At high concentrations, elements such as As, Cr, and Ni can be hazardous and may lead to various health problems in humans, including cancer. The current study measured As, Cd, Cr, Cu, Ni, Pb, V, and Zn concentrations in agricultural soils. Pollution levels and potential negative impacts on human and environmental health were determined using the United States Environmental Protection Agency (USEPA) standard methodologies. According to the study’s findings, the studied element concentrations descended in the following order: Zn > Cr > V > Ni > As > Cu > Pb > Cd. Of these, As (27.6 mg/kg), Cr (85.7 mg/kg), Ni (61.9 mg/kg), and Zn (92.3 mg/kg) concentrations were higher than average world background levels. Each of these elements also had an enrichment factor (EF > 1), indicating their anthropogenic origin. The combined pollution load index (PLI > 1) and geo-accumulation index (Igeo) range values of −0.2–2.5 further indicated that the soil was polluted up to 58%. However, the ecological risk factor (Er ≤ 40.6) and potential ecological risk index (PERI = 79.6) suggested low ecological risk. A human health risk evaluation showed that only As, with a hazard index (HI) of 1.3, posed a non-carcinogenic risk to infants. Additionally, As, Cr, and Ni, with total carcinogenic risk (TCR) values of 1.18 × 10−4 and 2.06 × 10−4 for adults and children, respectively, proved carcinogenic to both age groups. The elements’ carcinogenic risk (CR) potential descended in the following order: Ni > As > Cr. Additionally, for both adults and children, oral ingestion is the most likely exposure pathway. Our findings support the need for closer monitoring of potentially toxic metals and metalloids levels in cultivated soils and farm produce in Qatar.


2020 ◽  
Vol 12 (1) ◽  
pp. 568-579
Author(s):  
Liping Mo ◽  
Yongzhang Zhou ◽  
Gnanachandrasamy Gopalakrishnana ◽  
Xingyuan Li

AbstractSihui city (South China) is much affected by nasopharyngeal carcinoma (NPC). To investigate the relationships between the toxic metals in soil and NPC incidence in Sihui, 119 surface soil samples were collected from agricultural fields and analyzed. The soil As–Cr contents in Longjiang (high-incidence area) are significantly lower than those in Weizheng and Jianglin (low-incidence areas), whereas the soil Pb content in Longjiang is significantly higher than that in Weizheng. The Nemerow pollution indices (PIN) of soils decrease in the order of Jianglin > Weizheng > Longjiang. The enrichment factor (EF) of Cd indicates that the Cd enrichment is contributed by human activities. Potential toxic metal-related ecological risk values decrease in the order of Jianglin > Weizheng > Longjiang. The mean hazard index (HI) value of Longjiang was lower than those of Weizheng and Jianglin. There are no adverse noncarcinogenic health effects of soil toxic metals to adults in the study areas. Carcinogenic risks of As and Cr via ingestion and dermal contact and total carcinogenic risk are within the warning range, from 10−6 to 10−4. Hence, we suggest that toxic metals in the soil may not be major geochemical carcinogenic factors of high NPC incidence in Sihui.


2020 ◽  
Vol 18 (2) ◽  
pp. 469-481
Author(s):  
Kamaladdin Karimyan ◽  
Mahmood Alimohammadi ◽  
Afshin Maleki ◽  
Masud Yunesian ◽  
Ramin Nabizadeh Nodehi ◽  
...  

2020 ◽  
Vol 15 (No. 4) ◽  
pp. 237-245
Author(s):  
María Custodio ◽  
Daniel Álvarez ◽  
Walter Cuadrado ◽  
Raúl Montalvo ◽  
Salomé Ochoa

The concentration of Cu, Fe, Pb, Zn and As in the surface water intended for human consumption and other uses in the Mantaro River basin were analysed using multivariate methods. The water samples were collected from seven water bodies in the Junín region in June 2019, in the low discharge period. In each body of water, a sector with six sampling sites was established. The Cu, Fe, Pb, Zn and As contents were determined by the flame atomic absorption spectrophotometry method. The correlation analysis revealed positive and significant correlations (P < 0.05) for the Zn/Pb, Pb/Fe and Zn/Fe pairs with a good association, higher than 0.80 and for the Pb/Cu, Fe/Cu, As/Pb and As/Zn pairs a weak degree of association (P < 0.05). The analysis of the main components showed three components with their own values > 1. The hierarchical grouping analysis classified the evaluated water bodies into three groups according to the concentration of the Cu, Fe, Pb, Zn and As. The high concentrations of heavy metals and arsenic recorded in the CIMIRM and MERIS irrigation channels reveal that the Mantaro River continues to be a sink for mine wastewater discharges and runoff from mining liabilities at the headwaters of the Mantaro basin. It is, therefore, necessary to implement urgent management policies to control and reduce the levels of contamination by potentially toxic metals and metalloids in the Mantaro River.


2019 ◽  
Vol 146 ◽  
pp. 444-454 ◽  
Author(s):  
Inderpreet Kaur ◽  
Akash Gupta ◽  
Bhupinder Pal Singh ◽  
Sumit Sharma ◽  
Ajay Kumar

Author(s):  
P. Audu ◽  
G. I. Oyet ◽  
B. S. Chibor

The concentrations of selected potentially toxic metals and other soil physico-chemical variables in soil receptacles of a solid waste dumpsite at Onne, Nigeria were assessed to ascertain the levels of contamination and ecological risks. Surface soils (0 – 20 cm depth) from four sampling areas (north, south, east and west) of the dumpsite were analyzed for Cd, Pb, Ni, As and Cr, using atomic absorption spectroscopy. Single and integrated ecological risks indices were calculated using established models. Results revealed the mean values (mg/kg) of Cd (1.00 – 3.09), Pb (125.37 – 285.48), Ni (10.37 – 16.17), As (0.26 – 0.87), Cr (52.16 – 77.17). Assessment of ecological risk indices for north, south, east and west showed {PLI (2.38, 1.27, 1.17 and 1.33), EF (1.01, 16.0, 13.90 and 56.0), Cd (21.50, 11.10, 9.49 and 10.90), PERI (392.0, 132.0, 148.0  and 157.0), PIAvg (5.17, 2.55, 2.27 and 2.56), PINemerow (7.75, 3.80, 3.18 and 3.38) } respectively. These implied that the soils around the dumpsite area were polluted due to enrichment of the selected metals and therefore of low quality. Ecological risk reduction strategies were also recommended.


2021 ◽  
Author(s):  
Thiago Augusto da Costa e Silva ◽  
Marcos de Paula ◽  
Washington Santos Silva ◽  
Gustavo Augusto Lacorte

Abstract Cement factories are the main sources of environmental pollutants among the different industrial activities, including soil contamination by potentially toxic metals and the Karst region of Southeastern Brazil is known for the implementation of large cement producing facilities. This study aims to evaluate whether there is an increase in the concentration of PTM in the soil surrounding the cement plants and to estimate their harmfulness to both local human population and environment. In total, 18 soil samples were collected from the surroundings of three cement plants as well as four soil samples from areas outside the influence of cement plants and concentration of the following potentially toxic metals (PTM) were estimated: Cd, Pb, Co, Cu, Cr, Mn, Ni, and Zn. The results revealed that all PTM concentrations from cement plant surroundings were significantly higher than PTM concentrations from control areas and no PTM concentrations from CPS or CA soil samples exceeded national and global contamination thresholds. However, Igeo Index indicated low level soil contamination by Pb, Cu and Cr and high levels for Co. We could not verify significant Non-carcinogenic risk to health for any soil sample, but carcinogenic risk analysis revealed different levels of carcinogenic risk among the sampled locations, for both adults and children. Our results indicate that exclusively evaluating the concentration of potentially toxic metals is not enough to verify the potential harmful effects of cement production for the surrounding population. Here we evidence that additional indices, based on both contamination indices and health risk assessments, should be considered for better evaluation of the impacts of cement production activity.


Sign in / Sign up

Export Citation Format

Share Document