scholarly journals An Autonomous, Self-Authenticating, and Self-Contained Secure Boot Process for Field-Programmable Gate Arrays

Cryptography ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 15 ◽  
Author(s):  
Don Owen Jr. ◽  
Derek Heeger ◽  
Calvin Chan ◽  
Wenjie Che ◽  
Fareena Saqib ◽  
...  

Secure booting within a field-programmable gate array (FPGA) environment is traditionally implemented using hardwired embedded cryptographic primitives and non-volatile memory (NVM)-based keys, whereby an encrypted bitstream is decrypted as it is loaded from an external storage medium, e.g., Flash memory. A novel technique is proposed in this paper that self-authenticates an unencrypted FPGA configuration bitstream loaded into the FPGA during the start-up. The internal configuration access port (ICAP) interface is accessed to read out configuration information of the unencrypted bitstream, which is then used as input to a secure hash function SHA-3 to generate a digest. In contrast to conventional authentication, where the digest is computed and compared with a second pre-computed value, we use the digest as a challenge to a hardware-embedded delay physical unclonable function (PUF) called HELP. The delays of the paths sensitized by the challenges are used to generate a decryption key using the HELP algorithm. The decryption key is used in the second stage of the boot process to decrypt the operating system (OS) and applications. It follows that any type of malicious tampering with the unencrypted bitstream changes the challenges and the corresponding decryption key, resulting in key regeneration failure. A ring oscillator is used as a clock to make the process autonomous (and unstoppable), and a novel on-chip time-to-digital-converter is used to measure path delays, making the proposed boot process completely self-contained, i.e., implemented entirely within the re-configurable fabric and without utilizing any vendor-specific FPGA features.

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2064
Author(s):  
Manar N. Shaker ◽  
Ahmed Hussien ◽  
Gehad I. Alkady ◽  
Hassanein H. Amer ◽  
Ihab Adly

Field programmable gate arrays (FPGAs) are increasingly used in industry (e.g., biomedical, space, and automotive industries). FPGAs are subjected to single, as well as multiple event upsets (SEUs and MEUs), due to the continuous shrinking of transistor dimensions. These upsets inevitably decrease system lifetime. Fault-tolerant techniques are often used to mitigate these problems. In this research, penta and hexa modular redundancy, as well as dynamic partial reconfiguration (DPR), are used to increase system reliability. We show, depending on the relative rates of the SEUs and MEUs, that penta modular redundancy has a higher reliability than hexa modular redundancy, which is a counter-intuitive result in some cases since increasing redundancy is expected to increase reliability. Focusing on penta modular redundancy, an error detection and recovery mechanism (voter) is designed. This mechanism uses the internal configuration access port (ICAP) and its associated controller, as well as DPR to mitigate SEUs and MEUs. Then, it is implemented on Xilinx Vivado tools targeting the Kintex7 7k410tfbg676 device. Finally, we show how to render this design fault secure in the event that SEUs or MEUs affect the voter itself. This fault secure voter either produces the correct output or gives an indication that the output is incorrect.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Luis Andres Cardona ◽  
Carles Ferrer

The Internal Configuration Access Port (ICAP) is the core component of any dynamic partial reconfigurable system implemented in Xilinx SRAM-based Field Programmable Gate Arrays (FPGAs). We developed a new high speed ICAP controller, named AC_ICAP, completely implemented in hardware. In addition to similar solutions to accelerate the management of partial bitstreams and frames, AC_ICAP also supports run-time reconfiguration of LUTs without requiring precomputed partial bitstreams. This last characteristic was possible by performing reverse engineering on the bitstream. Besides, we adapted this hardware-based solution to provide IP cores accessible from the MicroBlaze processor. To this end, the controller was extended and three versions were implemented to evaluate its performance when connected to Peripheral Local Bus (PLB), Fast Simplex Link (FSL), and AXI interfaces of the processor. In consequence, the controller can exploit the flexibility that the processor offers but taking advantage of the hardware speed-up. It was implemented in both Virtex-5 and Kintex7 FPGAs. Results of reconfiguration time showed that run-time reconfiguration of single LUTs in Virtex-5 devices was performed in less than 5 μs which implies a speed-up of more than 380x compared to the Xilinx XPS_HWICAP controller.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2272
Author(s):  
Safa Bouguezzi ◽  
Hana Ben Fredj ◽  
Tarek Belabed ◽  
Carlos Valderrama ◽  
Hassene Faiedh ◽  
...  

Convolutional Neural Networks (CNN) continue to dominate research in the area of hardware acceleration using Field Programmable Gate Arrays (FPGA), proving its effectiveness in a variety of computer vision applications such as object segmentation, image classification, face detection, and traffic signs recognition, among others. However, there are numerous constraints for deploying CNNs on FPGA, including limited on-chip memory, CNN size, and configuration parameters. This paper introduces Ad-MobileNet, an advanced CNN model inspired by the baseline MobileNet model. The proposed model uses an Ad-depth engine, which is an improved version of the depth-wise separable convolution unit. Moreover, we propose an FPGA-based implementation model that supports the Mish, TanhExp, and ReLU activation functions. The experimental results using the CIFAR-10 dataset show that our Ad-MobileNet has a classification accuracy of 88.76% while requiring little computational hardware resources. Compared to state-of-the-art methods, our proposed method has a fairly high recognition rate while using fewer computational hardware resources. Indeed, the proposed model helps to reduce hardware resources by more than 41% compared to that of the baseline model.


Cryptography ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 6 ◽  
Author(s):  
Saleh Mulhem ◽  
Ayoub Mars ◽  
Wael Adi

New large classes of permutations over ℤ 2 n based on T-Functions as Self-Inverting Permutation Functions (SIPFs) are presented. The presented classes exhibit negligible or low complexity when implemented in emerging FPGA technologies. The target use of such functions is in creating the so called Secret Unknown Ciphers (SUC) to serve as resilient Clone-Resistant structures in smart non-volatile Field Programmable Gate Arrays (FPGA) devices. SUCs concepts were proposed a decade ago as digital consistent alternatives to the conventional analog inconsistent Physical Unclonable Functions PUFs. The proposed permutation classes are designed and optimized particularly to use non-consumed Mathblock cores in programmable System-on-Chip (SoC) FPGA devices. Hardware and software complexities for realizing such structures are optimized and evaluated for a sample expected target FPGA technology. The attained security levels of the resulting SUCs are evaluated and shown to be scalable and usable even for post-quantum crypto systems.


2019 ◽  
Vol 28 (14) ◽  
pp. 1950246
Author(s):  
I. Hariharan ◽  
M. Kannan

Modern embedded systems are packed with dedicated Field Programmable Gate Arrays (FPGAs) to accelerate the overall system performance. However, the FPGAs are susceptible to reconfiguration overheads. The reconfiguration overheads are mainly because of the configuration data being fetched from the off-chip memory at run-time and also due to the improper management of tasks during execution. To reduce these overheads, our proposed methodology mainly focuses on the prefetch heuristic, reuse technique, and the available memory hierarchy to provide an efficient mapping of tasks over the available memories. Our paper includes a new replacement policy which reduces the overall time and energy reconfiguration overheads for static systems in their subsequent iterations. It is evident from the result that most of the reconfiguration overheads are eliminated when the applications are managed and executed based on our methodology.


Cryptography ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 28 ◽  
Author(s):  
Saleh Mulhem ◽  
Wael Adi

The Secret Unknown Cipher (SUC) concept was introduced a decade ago as a promising technique for creating pure digital clone-resistant electronic units as alternatives to the traditional non-consistent Physical Unclonable Functions (PUFs). In this work, a very special unconventional cipher design is presented. The design uses hard-core FPGA (Field Programmable Gate Arrays) -Mathblocks available in modern system-on-chip (SoC) FPGAs. Such Mathblocks are often not completely used in many FPGA applications; therefore, it seems wise to make use of such dead (unused) modules to fabricate usable physical security functions for free. Standard cipher designs usually avoid deploying multipliers in the cipher mapping functions due to their high complexity. The main target of this work is to design large cipher classes (e.g., cipher class size >2600) by mainly deploying the FPGA specific mathematical cores. The proposed cipher designs are novel hardware-oriented and new in the public literature, using fully new unusual mapping functions. If a random unknown selection of one cipher out of 2600 ciphers is self-configured in a device, then a Secret Unknown Cipher module is created within a device, making it physically hard to clone. We consider the cipher module for free (for zero cost) if the major elements in the cipher module are making use of unused reanimated Mathblocks. Such ciphers are usable in many future mass products for protecting vehicular units against cloning and modeling attacks. The required self-reconfigurable devices for that concept are not available now; however, they are expected to emerge in the near future.


2019 ◽  
Vol 146 (4) ◽  
pp. 2879-2879
Author(s):  
Ross K. Snider ◽  
Trevor Vannoy ◽  
James Eaton ◽  
Matthew Blunt ◽  
E. Bailey Galacci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document