scholarly journals New Coordination Compounds of CuII with Schiff Base Ligands—Crystal Structure, Thermal, and Spectral Investigations

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1004 ◽  
Author(s):  
Dariusz Osypiuk ◽  
Beata Cristóvão ◽  
Agata Bartyzel

The new mono-, di- and tetranuclear coordination compounds [Cu(HL1)]·H2O (1), [Cu2(L1)(OAc)(MeOH)]·2H2O·MeOH (2), [Cu4(L2)2(OAc)2]·4MeOH (3), and [Cu4(L2)2(OAc)2]·4H2O·4MeOH (4) were synthesized by the direct reaction of 2,2′-{(2-hydroxypropane-1,3-diyl)bis[nitrilomethylidene]}bis(4-bromo-6-methoxyphenol) (H3L1) or 2,2′-{(2-hydroxypropane-1,3-diyl)bis(nitriloeth-1-yl-1-ylidene)}diphenol (H3L2) and the Cu(II) salt. They were characterized by elemental analysis, X-ray fluorescence (XRF), Fourier transform infrared (FTIR) spectroscopy, simultaneous thermal analysis and differential scanning calorimetry (TG/DSC), and thermal analysis coupled with Fourier transform infrared spectroscopy (TG-FTIR) techniques and the single crystal X-ray diffraction study. In the dinuclear complex 2, the copper(II) ions are bridged by an alkoxo- and a carboxylato bridges. The tetranuclear complexes 3 and 4 are formed from dinuclear species linkage through the phenoxo oxygen atoms of the fully deprotonated H3L2. Compounds 1–4 are stable at room temperature. During heating in air, at first, the solvent molecules (water and/or methanol) are lost and after that, the organic part undergoes defragmentation and combustion. The final decomposition solid product is CuO. The main gaseous products resulting from the thermal degradation of 1–4 in a nitrogen atmosphere were: H2O, MeOH, CH3COOH, CH4, C6H5OH, CO2, CO, and NH3.

2016 ◽  
Vol 5 (1) ◽  
pp. 6
Author(s):  
Budi Setiawan ◽  
Erizal Zaini ◽  
Salman Umar

Sebuah penelitian tentang sistem dispersi padat dari asiklovir dengan poloxamer 188 telah dilakukan formulasi dengan pencampuran secara fisika dengan rasio 1 : 1, 1 : 3, 1 : 5 dan dispersi padat 1 : 1, 1 : 3, 1 : 5 dan penggilingan 1:1 sebagai pembanding. Dispersi padat dibuat menggunakan metode pencairan (fusi), yang digabung dengan poloxamer 188 pada hotplate kemudian asiklovir dimasukkan ke dalam hasil poloxamer 188 lalu di kocok hingga membentuk masa homogen. Semua formula yang terbentuk termasuk asiklovir poloxamer 188 murni dianalisis karakterisasinya dengan Differential Thermal Analysis (DTA), X-ray Diffraction, Scanning Electron Microscopy (SEM), dan Fourier Transform Infrared (FTIR), kemudian pengambilan dilakukan  (penentuan kadar) mengunakan spektrofotometer UV pada panjang gelombang 257,08 nm dan uji laju disolusi dengan aquadest bebas CO2 menggunakan metode dayung. Hasil pengambilan  (penentuan kadar) menunjukkan bahwa semua formula memenuhi persyaratan farmakope Amerika edisi 30 dan farmakope Indonesia edisi 4 yaitu 95-110%. Sedangkan hasil uji laju disolusi untuk campuran fisik 1: 1, dan dispersi padat 1: 1, dan penggilingan 1: 1 menunjukkan peningkatan yang nyata dibandingkan asiklovir murni. Hal ini juga dapat dilihat dari hasil perhitungan statistik  menggunakan analisis varian satu arah  SPSS 17.


Author(s):  
Fauzi Rahman ◽  
Agnes Nuniek Winantari ◽  
Dwi Setyawan ◽  
Siswandono .

ABSTRACTObjective: This study aimed to compare the characteristics of acyclovir (ACV)-succinic acid (SA) cocrystal with grinding and slurry method.Methods: Cocrystals were prepared using grinding and slurry methods. Physicochemical characterizations were performed using powder X-raydiffraction (PXRD), differential scanning calorimetry, Fourier transform infrared (IR) spectroscopy, scanning electron microscope (SEM), anddissolution test.Results: The study revealed that cocrystal of ACV-SA showed a decrease in the melting temperature, i.e., 175.10°C, respectively, in comparison with themelting point of the constituent materials (ACV 253.53°C and SA 187.29°C). PXRD diffractogram showed that cocrystal with grinding method exhibitednew diffraction peaks at angle 2θ=8.92°, 16.24°, and 17.14°, while PXRD diffractogram of cocrystal with slurry method exhibit new diffraction peaksat angle 2θ=16.25°, and 19.63°. Characterization with IR spectroscopy showed the disappearance of transmission peaks at 3441cm disappearance ofC=O stretch at 1584cm and 1612cm. Dissolution efficiency of each treatment group calculated the efficiency of dissolution in 15th minutes, grindingmethod cocrystal with grinding time 15 minutes give the dissolution efficiency were 54.23%. Slurry method cocrystal with solvent concentration12 ml/g gives the high value of the dissolution efficiency is 74.36%. SEM micrographs showed that cocrystals prepared by solvent evaporation methodhave differences crystal form at magnification 5000× magnification compared to pure ACV and physical mixture.Conclusion: The study concluded that cocrystals of ACV-SA were successfully formed using grinding and slurry methods. The formed cocrystalsof ACV-SA exhibited different physicochemical characteristics as compared to the constituent materials. The formed cocrystals prepared by slurrymethod have a high intensity of diffraction peak on X-ray diffraction and highest dissolution efficiency at 15 minutes rather than grinding methodcocrystal.Keywords: Cocrystal, Acyclovir, Succinic acid, Grinding, Slurry, Powder X-ray diffraction, Fourier transform infrared, Dissolution rate. 


1996 ◽  
Vol 11 (3) ◽  
pp. 703-715 ◽  
Author(s):  
H. C. Zeng

The PbO/MoO3 system with 47%: 53%, 53%: 47%, and 50%: 50% molar ratios at various processing temperatures has been studied with x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential thermal analysis (DTA) methods. It is found that in addition to the crystallization of primary PbMoO4 phase, subphases such as Pb2MoO5 and PbMo2O7 are also formed. The remaining PbO and MoO3 are detected at certain stages of the thermal process due to localized powder inhomogeneity. Physical processes, such as sublimation, eutectic melting, solid to liquid, and liquid to vapor transformations are also investigated. In particular, evaporations of excessive PbO or MoO3 in the nonstoichiometric PbO/MoO3 can be correlated to thermal processing parameters. The current study has led to the following three processing guidelines to obtain stoichiometric PbMoO4: (i) for high temperature application, such as the Czochralski melt growth, it is suggested an excessive MoO3 (a few mol %) must be included and a slow heating rate should be employed; (ii) for low temperature synthesis, the stoichiometric PbO–MoO3 can be used, but with a fast heating rate; and (iii) PbO-rich PbO/MoO3 system is not recommended in PbMoO4 synthesis.


2020 ◽  
Vol 45 (4) ◽  
pp. 32-39
Author(s):  
Jose Marques Luiz ◽  
Ronaldo Spezia Nunes

The amidosulfonates of Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were prepared by the direct reaction between the metal carbonate and the amidosulfonic acid with heating and stirring. The compounds were characterized by infrared absorption spectroscopy (IRFT), elemental analysis, thermal analysis (TG and DTA) and X-ray diffraction by the powder method. The absorptions observed in IR spectra are associated with N-H and O-H stretching, as well as symmetrical and asymmetric S-O stretching in the sulfonic group. The compounds present X-ray diffraction pattern with well-defined reflections, showing no evidence of isomorphism. The TG-DTA curves allowed to establish the stoichiometry of compounds as M(NH2SO3)2.xH2O, where M = Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ and x ranging from 1 to 4. Dehydration leads to the formation of stable anhydrous. In all cases the respective sulfates are formed as an intermediate. After consecutive steps of decomposition, the respective oxides were obtained: Mn3O4, CoO, NiO, CuO and ZnO. The TG-DTA curves are characteristic for each sample, with thermal events related to dehydration and ligand decomposition.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2238 ◽  
Author(s):  
Shanshan Wang ◽  
Liang Zhang ◽  
Kate Semple ◽  
Min Zhang ◽  
Wenbiao Zhang ◽  
...  

Bamboo charcoal (BC) and aluminum hypophosphite (AHP) singly and in combination were investigated as flame-retardant fillers for polylactic acid (PLA). A set of BC/PLA/AHP composites were prepared by melt-blending and tested for thermal and flame-retardancy properties in Part I. Here, in Part II, the results for differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), thermogravimetry-Fourier transform infrared spectrometry (TG-FTIR), X-ray diffraction (XRD), and X-ray photoelectron analysis (XPS) are presented. The fillers either singly or together promoted earlier initial thermal degradation of the surface of BC/PLA/AHP composites, with a carbon residue rate up to 40.3%, providing a protective layer of char. Additionally, BC promotes heterogeneous nucleation of PLA, while AHP improves the mechanical properties and machinability. Gaseous combustion products CO, aromatic compounds, and carbonyl groups were significantly suppressed in only the BC-PLA composite, but not pure PLA or the BC/PLA/AHP system. The flame-retardant effects of AHP and BC-AHP co-addition combine effective gas-phase and condensed-phase surface phenomena that provide a heat and oxygen barrier, protecting the inner matrix. While it generated much CO2 and smoke during combustion, it is not yet clear whether BC addition on its own contributes any significant gas phase protection for PLA.


Sign in / Sign up

Export Citation Format

Share Document