scholarly journals Influence of LiCl and AgNO3 Doping on the Electrical Conductivity of PVA Flexible Electrolyte Polymer Film

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 822
Author(s):  
Abdullah F. Al Naim

Recently, the electrical conductive electrolyte based on flexible polymeric films have been attracted much attentions, due to their applications in batteries, thermoelectrics, temperature sensors and others. In this regard, two polymeric electrolytes (PVA/LiCl) and (PVA/AgNO3) films have been engineered and the influence of the dopants and the annealing temperature on the structural, morphology and ac and dc conductivities is extensively studied. It was found that the films crystallinity has the order PVA/AgNO3 (49.44%) > PVA (38.64%) > PVA/LiCl (26.82%). Additionally, the dc conductivity of the films is increased with embedding the dopants into the PVA as the order PVA/AgNO3 (13.7 × 10−4 S/cm) > PVA/LiCl (1.63 × 10−5 S/cm) > PVA (1.71 × 10−6 S/cm) at 110 °C. It is also found that there is a sharp increase for σac as the frequency increases up to 107 Hz and also as the temperature increases to 110 °C. However, the order of increasing the σac is PVA/LiCl (155 × 10−3 S/cm) > PVA/AgNO3 (2.5 × 10−5 S/cm) > PVA (2 × 10−6 S/cm) at f = 107 Hz and 110 °C. The values of exponent are 0.870, 0.405 and 0.750 for PVA, PVA/AgNO3 and PVA/LiCl, respectively, and it is increased as the temperature increases for PVA and PVA/LiCl, but it is decreased for PVA/AgNO3. The activation energies Ea are 0.84, 0.51 and 0.62 eV for PVA, PVA/AgNO3 and PVA/LiCl, respectively. Moreover, the values of activation energy for charge carrier migration Em are 0.60, 0.34 and 0.4 eV for PVA, PVA/AgNO3 and PVA/LiCl, respectively. By using a simple approximation, the carrier concentration, carrier mobility and carrier diffusivity are calculated, and their values are increased as the temperature increases for all samples, but they are higher for PVA/LiCl than that of PVA/AgNO3. These results are discussed in terms of some obtained parameters such as hopping frequency, free volume and chain mobility. Interestingly, the conduction mechanism was found to be the electronic charge hopping for PVA and PVA/LiCl films, however it was found to be the ionic charge diffusion (n < 0.5) for PVA/AgNO3 film. It has been predicted that these electrolytic films have a prospective applications in batteries design, temperature sensors, electronic and wearable apparatuses at an affordable cost.

1995 ◽  
Vol 393 ◽  
Author(s):  
Joyce Albritton Thomas ◽  
Grant M. Kloster ◽  
D. Shriver ◽  
C. R. Kannewurf

ABSTRACTRecently, there has been considerable interest in advanced materials and processing techniques for practical applications. V2O5 xerogels have generated much attention because they are layered materials that undergo reversible redox intercalation with lithium. The sol-gel process has been used to intercalate V2O5 xerogels with the polymer electrolyte, oxymethylene linked poly(ethylene oxide) - lithium triflate [(a-PEO)n(LiCF3SO3)]. The resulting nanocomposite is a mixed ionic-electronic conductor in which the ionic charge carriers in the polymer electrolyte are in intimate contact with the electronic charge carriers in the V205 xerogel. Variable-temperature electronic conductivity and thermoelectric power measurements have been performed to examine the charge transport properties.


2015 ◽  
Vol 17 (39) ◽  
pp. 26160-26165 ◽  
Author(s):  
Terence Musho ◽  
Nianqiang Wu

The electron mobility of a Zr-UiO-66 benzenedicarboxylate (BDC) metal-organic framework (MOF) with three functional designs was investigated using a DFT method in combination with a Boltzmann relaxation time approximation. The results provide evidence of strong control of the charge carrier mobility in functionalized MOFs through manipulation of the majority carrier population.


A comprehensive survey on experimental techniques, results and theoretical interpretations concerning the self-dissociation and protonic charge transport in water and ice is given. Recent investigations of fast protolytic reactions in pure water and aqueous solutions by means of relaxation techniques complete our knowledge about state and kinetic properties of the proton in this medium. In comparison here with our experience regarding the same properties in ice crystals are far less complete, as usual techniques of aqueous solutions are not applicable. Direct measurements of individual properties of ‘excess’ and ‘defect’ protons in ice (mobilities, concentrations, reaction rates) are presented. The proton transport in hydrogen-bonded media is completely different from normal ionic migration and corresponds more to electronic transport processes in semi-conductors. Generally the proton transport through hydrogen bonds includes two processes: (1) The formation (or rearrangement) of (H-bond) structure with orientation, favourable for a proton transition, and (2) the charge transfer within the H bond. The first step is rate determining in water, whereas the second one is decisive for the charge transport in ice. The requirements for a theoretical treatment therefore are (1) for water: a theory of ‘structural diffusion’ of the H-bonded hydration complex of H 3 O + , and (2) for ice: a (quantum-mechanical) theory of the protonic motion within the potential well of the H bond. The mechanism of structural diffusion provides an explanation of the anomalous H 3 O + and OH - mobility and their recombination rate in water. The difference between protonic and normal ionic charge transport occurs most obviously in the absolute values of mobilities in ice. The proton mobility in ice differs by many orders of magnitude from that of normal ions, but only by a factor of about 50 from electronic mobilities in some metals and semi-conductors. Further arguments, demonstrating the analogy between protonic and electronic charge transport are given. The reaction kinetics of protolytic systems and the fast proton transport in H-bonded systems are of certain importance with respect to biological problems.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1193
Author(s):  
Airefetalo Sadoh ◽  
Samiha Hossain ◽  
Nuggehalli M. Ravindra

The need for passive sensors to monitor changes in temperature has been critical in several packaging related applications. Most of these applications involve the use of bar codes, inks and equipment that involve constant complex electronic manipulation. The objective of this paper is to explore solutions to temperature measurements that not only provide product information but also the condition of the product in real time, specifically shelf-life. The study will explore previously proposed solutions as well as plans for modified approaches that involve the use of smart polymers as temperature sensors.


2008 ◽  
Vol 64 (a1) ◽  
pp. C32-C32
Author(s):  
Y. Shimizu ◽  
B. Heinrich ◽  
D. Guillon ◽  
M. Shiro ◽  
H. Monobe ◽  
...  

Author(s):  
S.G. Pal ◽  
G. Baur ◽  
B. Ghosh ◽  
S. Palit ◽  
S. Modak ◽  
...  

In recent years some of the blood cells of several molluscs and insects are characterised as immunocytes. Similar cells from a few invertebrates from India have been looked into under conventional TEM to register the ultrastructural features. This type of study is first of its kind in the subcontinent. Immunocytes from bivalve molluscs Meretrix meretrix, Laroellidens marqinalis and two insect species, apterygote Ctenolepism a longicaudata and pterygote Gesonula punctifrons provide a new set of fine structural information which forms a basis of comparison with those studied earlier.Immunocytes have been collected from the fresh live species of bivalve molluscs and insects obtained locally at Calcutta. These were fixed in icecold 2% glutaraldehyde in 0.1M phosphate buffer (pH 7.2-7.4) for 1-2 hours at 4-5°C. Subseguently pellets were post-osmicated in 1% OsO4 at room temperature for 1-2 hours. Following dehydration these were embedded in Araldite mixture in plastic capsules and polymerization was effected for 2 days at 60°C. Ultrathin sections were cut in a ultrotome and sections were double stained with Uranyl acetate and lead citrate. These were viewed in a TEM.


Sign in / Sign up

Export Citation Format

Share Document