scholarly journals Influence of High-Concentration LLDPE on the Manufacturing Process and Morphology of Pitch/LLDPE Fibres

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1099
Author(s):  
Salem Mohammed Aldosari ◽  
Muhammad A. Khan ◽  
Sameer Rahatekar

A high modulus of elasticity is a distinctive feature of carbon fibres produced from mesophase pitch. In this work, we expand our previous study of pitch/linear low-density polyethylene blend fibres, increasing the concentration of the linear low-density polyethylene in the blend into the range of from 30 to 90 wt%. A scanning electron microscope study showed two distinct phases in the fibres: one linear low-density polyethylene, and the other pitch fibre. Unique morphologies of the blend were observed. They ranged from continuous microfibres of pitch embedded in linear low-density polyethylene (occurring at high concentrations of pitch) to a discontinuous region showing the presence of spherical pitch nodules (at high concentrations of linear low-density polyethylene). The corresponding mechanical properties—such as tensile strength, tensile modulus, and strain at failure—of different concentrations of linear low-density polyethylene in the pitch fibre were measured and are reported here. Thermogravimetric analysis was used to investigate how the increased linear low-density polyethylene content affected the thermal stability of linear low-density polyethylene/pitch fibres. It is shown that selecting appropriate linear low-density polyethylene concentrations is required, depending on the requirement of thermal stability and mechanical properties of the fibres. Our study offers new and useful guidance to the scientific community to help select the appropriate combinations of linear low-density polyethylene/pitch blend concentrations based on the required mechanical property and thermal stability of the fibres.

2016 ◽  
Vol 1817 ◽  
Author(s):  
L.Y. Jaramillo ◽  
J.C. Posada-Correa ◽  
E. Pabón-Gelves ◽  
E. Ramos-Ramírez ◽  
N.L. Gutiérrez-Ortega

ABSTRACTIn this work there was studied the effect of nano-Mg/Al hydrotalcite (NHT) as filler on maleic anhydride grafted linear low density polyethylene (LLDPE-g-MA). NHT was synthesized by the coprecipitation method with a ratio of Mg/Al=6 and nanocomposites were prepared using 1, 3 and 5 %wt of filler via melt-blending.Morphological and structural analysis of NHT were performed and for nanocomposites, tensile tests and thermal properties were measured. Results showed that filler was well dispersed in the LLDPE matrix, mechanical properties were enhanced in most of the cases and thermal stability improvements were achieved in the nanocomposites.


2015 ◽  
Vol 37 (11) ◽  
pp. 3167-3174 ◽  
Author(s):  
S. Sánchez-Valdes ◽  
E. Ramírez-Vargas ◽  
L.F. Ramos de Valle ◽  
J.G. Martinez-Colunga ◽  
J. Romero-Garcia ◽  
...  

e-Polymers ◽  
2017 ◽  
Vol 17 (5) ◽  
pp. 373-381 ◽  
Author(s):  
Xinxin Cao ◽  
Mengqi Wu ◽  
Aiguo Zhou ◽  
You Wang ◽  
Xiaofang He ◽  
...  

AbstractA novel two-dimensional material MXene was used to synthesize nanocomposites with linear low-density polyethylene (LLDPE). The influence of MXene on crystallization and thermal degradation kinetics of LLDPE was investigated. Non-isothermal crystallization kinetics was investigated by using differential scanning calorimetry (DSC). The experimental data was analyzed by Jeziorny theory and the Mo method. It is found that MXene acted as a nucleating agent during the non-isothermal crystallization process, and 2 wt% MXene incorporated in the nanocomposites could accelerate the crystallization rate. Findings from activation energy calculation for non-isothermal crystallization came to the same conclusion. Thermal gravity (TG) analysis of MXene/LLDPE nanocomposites was conducted at different heating rates, and the TG thermograms suggested the nanocomposites showed an improvement in thermal stability. Apparent activation energy (Ea) of thermal degradation was calculated by the Kissinger method, and Ea values of nanocomposites were higher than that of pure LLDPE. The existence of MXene seems to lead to better thermal stability in composites.


2020 ◽  
pp. 089270572094421
Author(s):  
Wagih Abdel Alim Sadik ◽  
Abdel Ghaffar Maghraby El Demerdash ◽  
Rafik Abbas ◽  
Alaa Bedir

The main goal of this work was to assess the technical feasibility of palm rachis (PR) as a reinforcing agent in the production of wood–plastic composites. Recycled linear low-density polyethylene/PR fiber composites were prepared at constant content (3 phc (per hundred compounds)) of maleic anhydride-grafted polyethylene as compatibilizer by melt blending method utilizing a two-roll mill and compression molding. The effect of nanosilica (NS), nanoclay (NC), and hybrid nanoparticles (NSNC) at different concentrations (2, 4, and 6 phc) on mechanical, physical, thermal, and morphological properties was investigated. The results of mechanical properties measurements demonstrated that when 6 phc NS, 4 phc NC, and 4 phc NSNC were added, tensile, modulus strength, and hardness reached their optimum values. At a high level of NC loading (6 phc), the increased populace of NC layers led to agglomeration and stress transfer gets restricted. Elongation at break and Izod impact strength were decreased by the incorporation of different nanoparticles. Water absorption and thickness swelling of prepared composites were found to decrease on the incorporation of NS and NC. In addition, the thermal stability showed slightly improved by the addition of nanoparticles, but there are no perceptible changes in the values of melting temperature by increasing the content of NS and NC or NSNC. Scanning electron microscopy study approved the good interaction of the PR fibers with the polymer matrix as well as the effectiveness of NS and NC in the improvement of the interaction. The finding indicated that wood–plastic composite treated by NS had the highest properties than other composites.


2020 ◽  
Vol 10 (6) ◽  
pp. 771-779
Author(s):  
Jing Deng ◽  
Qi Jue Chen ◽  
Ding Jie Chen ◽  
Luo Jie Zheng ◽  
Wen Li ◽  
...  

The aim of this research was to probe the potential application of nano-titanium dioxide (TiO2)/basic magnesium hypochlorite (BMH)-containing linear low-density polyethylene (LLDPE) composite film in grape fresh-keeping. Mechanical properties, transparency, barrier performance and antibacterial activity of the nano-composite membrane were measured, and results showed that the antibacterial zone diameter of TiO2/BMH on pathogen-Aspergillus niger was 31.4 mm, with mixing ratio of BMH/TiO2 to 2:1. It was clearly shown that the synthesized nano-composite films decreased mechanical properties and transparency of the membrane, and also had a significant impact on sensory score, mass loss rate, decay rate, ascorbic acid (Vc) content and titratable acid content compared with LLDPE films. Moreover, the results revealed that the LLDPE antibacterial film can be effectively used for storing grapes, preserving the flavor of grapes and had an obviously effect in prolonging grapes’ shelf life.


Sign in / Sign up

Export Citation Format

Share Document