scholarly journals Mechanical and Electronic Properties of DNTF Crystals under Different Pressure

Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1180
Author(s):  
Hai Nan ◽  
Xianzhen Jia ◽  
Xuanjun Wang ◽  
Heping Liu ◽  
Fan Jiang ◽  
...  

In the present study, the effects of pressure on the structure, elastic properties and electronic structure of DNTF compounds are studied using the first principles method. It is found that pressure has a great influence on lattice constants. When the pressure reaches 80 GPa, the structure of DNTF changes suddenly. The variation trend of C11, C22 and C33 values is consistent with that of pressure. In addition, pressure can improve the compressibility and shear resistance of the DNTF compound. The pressure can reduce the bandgap and further increases the charge density, causing DNTF to decompose and explode.

2012 ◽  
Vol 54 ◽  
pp. 287-292 ◽  
Author(s):  
Xiao-Jun Chen ◽  
Meng-Xue Zeng ◽  
Ren-Nian Wang ◽  
Zhou-Sheng Mo ◽  
Bi-Yu Tang ◽  
...  

2014 ◽  
Author(s):  
Hansa Devi ◽  
Gitanjali Pagare ◽  
S. S. Chouhan ◽  
Sankar P. Sanyal

2017 ◽  
Vol 31 (02) ◽  
pp. 1650263
Author(s):  
J. G. Yan ◽  
Z. J. Chen ◽  
G. B. Xu ◽  
Z. Kuang ◽  
T. H. Chen ◽  
...  

Using first-principles calculation we investigated the structural, electronic and elastic properties of paramagnetic CaFeAs2. Our results indicated that the density of states (DOS) was dominated predominantly by Fe-3[Formula: see text] states at Fermi levels, and stronger hybridization exists between As1 and As1 atoms. Three hole pockets are formed at [Formula: see text] and Z points, and two electronic pockets are formed at A and E points. The Dirac cone-like bands appear near B and D points. For the first time we calculated the elastic properties and found that CaFeAs2 is a mechanically stable and moderately hard material, it has elastic anisotropy and brittleness, which agrees well with the bonding picture and the calculation of Debye temperature ([Formula: see text]).


1993 ◽  
Vol 319 ◽  
Author(s):  
N. Kioussis ◽  
H. Watanabe ◽  
R.G. Hemker ◽  
W. Gourdin ◽  
A. Gonis ◽  
...  

AbstractUsing first-principles electronic structure calculations based on the Linear-Muffin-Tin Orbital (LMTO) method, we have investigated the effects of interstitial boron and hydrogen on the electronic structure of the L12 ordered intermetallic Ni3A1. When it occupies an octahedral interstitial site entirely coordinated by six Ni atoms, we find that boron enhances the charge distribution found in the strongly-bound “pure” Ni3AI crystal: Charge is depleted at Ni and Al sites and enhanced in interstitial region. Substitution of Al atoms for two of the Ni atoms coordinating the boron, however, reduces the interstitial charge density between certain atomic planes. In contrast to boron, hydrogen appears to deplete the interstitial charge, even when fully coordinated by Ni atoms. We suggest that these results are broadly consistent with the notion of boron as a cohesion enhancer and hydrogen as an embrittler.


2020 ◽  
Vol 7 (12) ◽  
pp. 200723
Author(s):  
Hai Duong Pham ◽  
Wu-Pei Su ◽  
Thi Dieu Hien Nguyen ◽  
Ngoc Thanh Thuy Tran ◽  
Ming-Fa Lin

The essential properties of monolayer silicene greatly enriched by boron substitutions are thoroughly explored through first-principles calculations. Delicate analyses are conducted on the highly non-uniform Moire superlattices, atom-dominated band structures, charge density distributions and atom- and orbital-decomposed van Hove singularities. The hybridized 2 p z –3 p z and [2s, 2 p x , 2 p y ]–[3s, 3 p x , 3 p y ] bondings, with orthogonal relations, are obtained from the developed theoretical framework. The red-shifted Fermi level and the modified Dirac cones/ π bands/ σ bands are clearly identified under various concentrations and configurations of boron-guest atoms. Our results demonstrate that the charge transfer leads to the non-uniform chemical environment that creates diverse electronic properties.


2010 ◽  
Vol 24 (24) ◽  
pp. 4851-4859
Author(s):  
KAIHUA HE ◽  
GUANG ZHENG ◽  
GANG CHEN ◽  
QILI CHEN ◽  
MIAO WAN ◽  
...  

The structural and electronic properties of BN(5, 5) and C(5, 5) nanotubes under pressure are studied by using first principles calculations. In our study range, BN(5, 5) undergoes obvious elliptical distortion, while for C(5, 5) the cross section first becomes an ellipse and then, under further pressure, is flattened. The band gap of BN(5, 5) decreases with increasing pressure, which is inverse to that of zinc blende BN, whereas for C(5, 5) the metallicity is always preserved under high pressure. The population of charge density indicates that intertube bonding is formed under pressure. We also find that BN(5, 5) may collapse, and a new polymer material based on C(5, 5) is formed by applying pressure.


2020 ◽  
Vol 34 (17) ◽  
pp. 2050150
Author(s):  
Dan Hong ◽  
Wei Zeng ◽  
Fu-Sheng Liu ◽  
Bin Tang ◽  
Qi-Jun Liu

The first-principles calculations are used to investigate the effects on mechanical and electronic properties of Ti-7333 alloy under the tension stress along [001], [100] and [110] directions. First, we study the structure and elastic properties of Ti-7333 alloy with 2, 16, 54 and 128 atoms, finding that the structural parameters of four models are comparative due to the approximate value of c/a and the elastic properties are also similar. Hence, we choose Ti-7333 alloy with 16 atoms to study the effects on mechanical and electronic properties under tension stress along [001], [100] and [110] directions. The changes of independent elastic constants, Debye temperature and anisotropic behavior under different tension stress along all the three directions can reflect that the tensile strength of Ti-7333 alloy may exist between [Formula: see text] and [Formula: see text] GPa and also find that it is easier to change the resistance to deformation of Ti-7333 alloy under the tension stress along [100] direction compared with [001] and [110] directions. What’s more, the calculated mechanical parameters show that the Ti-7333 alloy is brittle and the tendency of variations is small with the increase in tension stress. The effects on electronic properties including metallic and covalent properties are not obvious due to the approximate height of TDOS, pseudogap and charge density.


RSC Advances ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 2448-2452
Author(s):  
Lili Lian ◽  
Yan Liu ◽  
Da Li ◽  
Shuli Wei

The structural phase transition, electronic properties, and bonding properties of antimony nitrides have been studied by using a first principles method.


Sign in / Sign up

Export Citation Format

Share Document