scholarly journals Beading Mechanism and Performance of Porous Steel Slag Microbead Abrasive

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1377
Author(s):  
Jingjing Pei ◽  
Yuzhu Zhang ◽  
Hongwei Xing ◽  
Qianqian Ren ◽  
Wenqing Huo ◽  
...  

The use of the gas-quenching process for preparing porous bead slag abrasive was investigated in this paper. An X-ray diffractometer, field emission scanning electron microscope, mercury intrusion porosimetry, and stereo microscope were used to analyze the microbead forming mechanism, pore structure, acid–alkali resistance, and polishing properties of porous steel slag microbead abrasives. Results show that the porous steel slag abrasives present a mono-disperse spherical shape with a hard shell and the porosity is 42.36%. The thermodynamic fractal model indicates that the fractal dimension of the abrasive is 2.226, which shows its simple pore structure. The sample has better chemical stability in the polishing fluid than in water, acid, and alkali solution. Therefore, aluminum and copper alloys are used as substrates for polishing tests. The results indicate that the abrasives could effectively improve the quality of the workpiece surface and the polishing efficiency for aluminum alloy was higher than that for copper alloy.


2011 ◽  
Vol 189-193 ◽  
pp. 612-617
Author(s):  
Hong Wei Xing ◽  
Yue Long ◽  
Xiu Li ◽  
Gao Liang Li ◽  
Yu Zhu Zhang ◽  
...  

A gas quenching process to deal with steel slag and its characteristics of the new technology was briefly introduced. The grinding characteristics, mineral phases of gas quenching steel slag and the potential economic benefits of using it as cement mixing material was studied by compared to heat-stew steel slag. The results indicated that the specific surface areas (S) and grinding times (t) of the gas quenching steel slag showed a first order exponential decay relationship. With the extension of time, the specific surface areas of heat-stew steel slag was tending to balance earlier than that of gas quenching steel slag; The energy consumption of gas quenching steel slag was much lower than that of heat-stew steel slag. Gas quenching steel slag was comprised of C2S, C3S, a certain amount of (Ca2(Al, Fe)2O5)and RO phase, but the content of RO phase was relatively low, which increased the grindability of the quenching steel slag, so that the grindability of gas quenching steel slag was much better than that of heat-stew steel slag. Gas quenching steel slag prepared for cement addictives would bring great economic benefits.



2021 ◽  
Vol 1017 ◽  
pp. 111-121
Author(s):  
V.S. Bessmertniy ◽  
V.A. Klimenko ◽  
M.A. Bondarenko ◽  
A.V. Olisov ◽  
L.L. Bragina

The glass micro balls based on glass domestic waste for road construction were obtained. Glass micro balls will reduce the contamination of road marking and increase its light-reflective ability at night. Colorless and colored container glass, as well as lead crystal, was chosen as the starting material for producing glass micro balls. An electric arc plasmotron UPU-8M was used to produce glass micro balls. Pre-crushed fractionated glass together with plasma-forming gas – argon was fed to the powder feeder and from the feeder to the plasma burner. Under the influence of high plasma temperatures, about 9000-12000K, the particles were melted, followed by cooling in the outgoing flow of plasma-forming gases. Due to high-temperature plasma exposure, partial evaporation of alkaline oxides and lead oxide occurred. Glass micro balls were enriched with the oxides of silicon, aluminum and calcium. This helped to increase the acid and alkali resistance of glass micro balls. The micro hardness, density, and refractive index of glass micro balls were studied. It is shown that glass micro balls have an ideal spherical shape and are x-ray amorphous. Glass micro balls are recommended for use in road construction as a reflective element of road marking.



Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhen Liu ◽  
Mingrui Zhang ◽  
Shijian Yu ◽  
Lin Xin ◽  
Gang Wang ◽  
...  

Underground coal gasification and exploitation of geothermal mine resources can effectively improve coal conversion and utilization efficiency, and the basic theory of the above technologies generally relies on the change law of the coal pore structure under thermal damage. Therefore, the influence mechanism of the development of the coal pore structure under thermal damage is analyzed by the nuclear magnetic resonance experiment, and the temperature-permeability fractal model is created. The results show that compared with microtransitional pores, the volume of meso-macropores in the coal body is more susceptible to an increase in temperature, which was most obvious at 200-300°C. During the heating process, the measured fractal dimension based on the T2 spectral distribution is between 2 and 3, indicating that the fractal characteristics did not disappear upon a change in external temperature. The temperature has a certain negative correlation with DmNMR, DMNMR, and DNMR, indicating that the complexity of the pore structure of the coal body decreased gradually with the increase of the temperature. Compared with the permeability calculated based on the theoretical permeability fractal model, the permeability obtained from the temperature-permeability fractal model has a similar increasing trend as the permeability measured by the NMR experiment when the temperature increases. The experimental study on pore structure and permeability characteristics of the low metamorphic coal under thermal damage provides a scientific theory for underground coal gasification and geothermal exploitation.



Author(s):  
Xueting Liu ◽  
Yue Tian ◽  
Dan Wei ◽  
Jincheng Liu


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Sun Min ◽  
Yufeng Bi ◽  
Mulian Zheng ◽  
Sai Chen ◽  
Jingjing Li

The energy consumption and greenhouse gas emission of asphalt pavement have become a very serious global problem. The high-temperature stability and durability of polyurethane (PU) are very good. It is studied as an alternative binder for asphalt recently. However, the strength-forming mechanism and the mixture structure of the PU mixture are different from the asphalt mixture. This work explored the design and performance evaluation of the PU mixture. The PU content of mixtures was determined by the creep slope (K), tensile strength ratios (TSR), immersion Cantabro loss (ICL), and the volume of air voids (VV) to ensure better water stability. The high- and low-temperature stability, water stability, dynamic mechanical property, and sustainability of the PU mixture were evaluated and compared with those of the stone matrix asphalt mixture (SMA). The test results showed that the dynamic stability and bending strain of the PU mixture were about 7.5 and 2.3 times of SMA. The adhesion level of PU and the basalt aggregate was one level greater than the limestone, and basalt aggregates were proposed to use in the PU mixture to improve water stability. Although the initial TSR and ICL of PU mixture were lower, the long-term values were higher; the PUM had better long-term water damage resistance. The dynamic modulus and phase angles (φ) of the PU mixture were much higher. The energy consumption and CO2 emission of the PU mixture were lower than those of SMA. Therefore, the cold-mixed PU mixture is a sustainable material with excellent performance and can be used as a substitute for asphalt mixture.



2011 ◽  
Vol 284-286 ◽  
pp. 73-77
Author(s):  
Wen Wu Wang ◽  
Hui Yan Cao ◽  
Zhi Ping Zhang ◽  
Jing Xiang Wang

Based on SiC grains and powder, flake graphite, AlN powder, Silicon powder, sintered alumina ultra-fine powder as the starting materials, the sample of SiAlON-Graphite-SiC composites was prepared by firing under N2 atmosphere at 1 550°C and then analyzed in terms of high temperature performances by XRD, SEM and EDAX etc. The interrelation between composition, structure and performance of the material was also investigated. It indicates that this material provides excellent thermal shock resistance and molten alkali resistance, also proper oxidation resistance and applicable as the inner lining of the blast furnace.



2010 ◽  
Vol 150-151 ◽  
pp. 861-867 ◽  
Author(s):  
Yue Long ◽  
Yu Zhu Zhang ◽  
Hong Wei Xing ◽  
Jun Guo Li ◽  
Gao Liang Li ◽  
...  

According to a series of experimental studies such as the content of the f-CaO, the relative grindability index of the gas quenching steel slag, the properties of gas quenching steel slag cement and a detailed analysis of the potential economic benefits of steel slag cement. It was found that it has a huge economic benefits in preparing the cement with gas quenching steel slag.The results showed that the content of f-CaO in slag particles less than 2mm were no more than 2.7% and there exists a well proportional relation between it and the grain size; the grindability of gas quenching steel slag is much better than heat-stew steel slag; what's more,because of the high hydration activity of gas quenching steel slag, it can be produced the perfect steel slag cement with excellent hydration, stability and strength.



Sign in / Sign up

Export Citation Format

Share Document