scholarly journals Growth and Thermal Properties of Mg-Doped Lithium Isotope Niobate (Mg:7LiNbO3) Crystal

Crystals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 313
Author(s):  
Nana Zhang ◽  
Xishi Tai ◽  
Xiaoru Pan ◽  
Mingjun Song ◽  
Jiyang Wang

An Mg-doped isotope lithium niobate (Mg:7LiNbO3) crystal was successfully grown from 7LiOH, Nb2O5, and MgO using the Crozchralski method. The weight of the as-grown crystal with good quality was about 40 g. The crystal structure was determined as an R3c space group using the X-ray powder diffraction (XRPD) method, and the crystal composition (Li%) determined using the Raman mode linewidth method was 49.29%. The average transmittance of the crystal in the range of 500–2500 nm was approximately 72%. Various thermal properties, including the specific heat (Cp), the thermal expansion coefficient (α), the thermal diffusion coefficient (λ), and the thermal conductivity (κ), were carefully determined and calculated, and the value divergences among Mg:7LiNbO3, the undoped isotope lithium niobate (7LiNbO3), and natural lithium niobate (LiNbO3) crystals were mainly related to the differences in microstructure caused by the crystal composition.

2021 ◽  
pp. 2150407
Author(s):  
S. I. Ibrahimova

The crystal structure and thermal properties of the [Formula: see text] compound have been investigated. Structural studies were performed by X-ray diffraction at room temperature. The crystal structure of this compound was found to correspond to the hexagonal symmetry of the space group P61. Thermal properties were studied using a differential scanning calorimetry (DSC). It was found in the temperature range [Formula: see text] that thermal effects occur at temperatures [Formula: see text] and [Formula: see text]. The thermodynamic parameters of these effects are calculated.


1989 ◽  
Vol 44 (8) ◽  
pp. 942-945 ◽  
Author(s):  
Wolfgang Schnick

Phosphorothionic triamide SP(NH2)3 is obtained by slow addition of SPCl3 dissolved in dry CH2Cl2 to a satured solution of NH3 in CH2Cl2 at —50°C. Ammonium chloride is removed from the resulting precipitate by treatment with HNEt2 followed by extraction with CH2Cl2. Coarse crystalline SP(NH2)3 is obtained after recrystallization from dry methanol. The crystal structure of SP(NH2)3 has been determined by single crystal X-ray methods (Pbca; a = 922.3(1), b = 953.8(1), c = 1058.4(2) pm, Z = 8). In the crystals the molecules show non-crystallographic point symmetry C8. The P—S bond (195.4(1) pm) is slightly longer than in SPCl3. From P—N bond lengths of about 166 pm a significant electrostatic strengthening of the P—N single bonds is assumed. Weak intermolecular hydrogen bonding interactions (N —H · · · N ≥ 329.5 pm; N — H · · · S ≥ 348.3 pm) are observed.Investigation of thermal properties shows a melting temperature of 115°C for SP(NH2)3. According to combined DTA/TG and MS investigations above this temperature the compound decomposes by evolution of H2S and NH3 to yield amorphous phosphorus(V)nitride.


Author(s):  
Carsten Wellm ◽  
Christian Näther

In the crystal structure of the title compound, [Fe(NCS)2(C12H9NO)2(CH4O)2], the FeII cations are octahedrally coordinated by two N atoms of 4-benzoylpyridine ligands, two N atoms of two terminal isothiocyanate anions and two methanol molecules into discrete complexes that are located on centres of inversion. These complexes are linked via intermolecular O—H...O hydrogen bonds between the methanol O—H H atoms and the carbonyl O atoms of the 4-benzoylpyridine ligands, forming layers parallel to (101). Powder X-ray diffraction proved that a pure sample was obtained but that this compound is unstable and transforms into an unknown crystalline phase within several weeks. However, the solvent molecules can be removed by heating in a thermobalance, which for the aged sample as well as the title compound leads to the formation of a compound with the composition Fe(NCS)2(4-benzoylpyridine)2, which exhibits a powder pattern that is similar to that of Mn(NCS)2(4-benzoylpyridine)2.


Author(s):  
Christoph Krebs ◽  
Inke Jess ◽  
Christian Näther

The reaction of Co(NCS)2 with 3-(aminomethyl)pyridine as coligand leads to the formation of crystals of the title compound, [Co(NCS)2(C6H8N2)2] n , that were characterized by single-crystal X-ray analysis. In the crystal structure, the CoII cations are octahedrally coordinated by two terminal N-bonded thiocyanate anions as well as two pyridine and two amino N atoms of four symmetry-equivalent 3-(aminomethyl)pyridine coligands with all pairs of equivalent atoms in a trans position. The CoII cations are linked by the 3-(aminomethyl)pyridine coligands into layers parallel to the ac plane. These layers are further linked by intermolecular N—H...S hydrogen bonding into a three-dimensional network. The purity of the title compound was determined by X-ray powder diffraction and its thermal behavior was investigated by differential scanning calorimetry and thermogravimetry.


1996 ◽  
Vol 51 (8) ◽  
pp. 1079-1083 ◽  
Author(s):  
N. Stock ◽  
W. Schnick

Coarse crystalline (NH2)2(O)P-N=P(NH2)3 is obtained from a NH3 saturated CH2Cl2 suspension of (NH2)2(O)P-N=P(NH2)3 NH4Cl at room temperature. (NH2)2(O)P-N=P(NH2)3·NH4Cl is synthesized by slow addition of Cl2(O)P-N=PCl3 to a solution of NH3 in CH2Cl2 at -78 °C. Excess NH4Cl is removed by treatment with HNEt2 followed by extraction with CH2Cl2. The crystal structure of (NH2)2(O)P-N=P(NH2)3 has been determined by single crystal X-ray methods (P21/c; a = 1462.8(3), b = 944.8(2), c = 1026.9(2) pm, β = 110.69(3)°; Z = 8). In the unit cell there are two crystallographically unique molecules. They form a three dimensional network by intermolecular hydrogen bonding interactions (N-H···N ≥ 313 pm. N-H···O ≥ 293 pm). The investigation of the thermal properties shows decomposition with evolution of NH3 above 80 °C.


2019 ◽  
Vol 37 (2) ◽  
pp. 238-243
Author(s):  
Omer Kaygili ◽  
Niyazi Bulut ◽  
Tankut Ates ◽  
Ismail Ercan ◽  
Suleyman Koytepe ◽  
...  

AbstractIn the present study, the dopant effect of Zn on the crystal structure, thermal properties and morphology of magnesium aluminate (MgAl2O4) spinel (MAS) structure was investigated. A pure and two Zn-containing MASs (e.g. MgAl1.93Zn0.07O4 and MgAl1.86Zn0.14O4) were synthesized for this purpose via a wet chemical method, and the as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, differential thermal analysis (DTA), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy techniques. It was found that the crystal structure, thermal properties and morphology of the MAS system change with the increase in the amount of Zn. MgO phase formation was observed. The values of the lattice parameter, unit cell volume and crystallite size increased, and the crystallinity percentage decreased. The morphology was also affected by adding of Zn.


2010 ◽  
Vol 43 (2) ◽  
pp. 276-279 ◽  
Author(s):  
Shuhua Yao ◽  
Xiaobo Hu ◽  
Tao Yan ◽  
Hong Liu ◽  
Jiyang Wang ◽  
...  

A near-stoichiometric lithium niobate single crystal has been grown by the Czochralski method in a hanging double crucible with a continuous powder supply system. Twins were found at one of the three characteristic growth ridges of the as-grown crystal. The twin structure was observed and analyzed by transmission synchrotron topography. The image shifts ΔXand ΔYin the transmission synchrotron topograph were calculated for the 3{\overline 2}{\overline 1}2 and 0\overline 222 reflections based on results from high-resolution X-ray diffractometry. It is confirmed that one of the {01{\overline 1}{\overline 2}}mplanes is the composition face of the twin and matrix crystals. The formation mechanism of these twins is discussed.


2008 ◽  
Vol 23 (4) ◽  
pp. 317-322 ◽  
Author(s):  
L. N. Ji ◽  
G. M. Cai ◽  
J. B. Li ◽  
J. Luo ◽  
J. K. Liang ◽  
...  

K2Zn3(P2O7)2 was synthesized by solid state reaction and its crystal structure was determined by ab initio method from powder X-ray diffraction (XRD) data. The title compound was determined to be orthorhombic with space group P212121, Z=4, and lattice parameters a=12.901(8) Å, b=10.102(6) Å, and c=9.958(1) Å. Values of lattice parameters from 303 to 573 K were measured by temperature-dependent XRD. Thermal expansion coefficients α0, lattice parameters, and cell volume at 0 K were determined to be α0(a)=1.62327×10−4/K, a0=12.855(4) Å, α0(b)=1.17921×10−4/K, b0=10.070(8) Å, α0(c)=2.62364×10−4/K, c0=9.880(4) Å, and α0(V)=6.599×10−2/K, V0=1278.967(0) Å3. The specific heat equation as a function of temperature was determined to be Cp=0.77115+0.00231T−1241.60027T−2−1.4133×10−6T2 (J/K g), for temperatures from 198 to 710 K. The melting point estimated from the μ-DTA heating curve is 795 °C.


2013 ◽  
Vol 11 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Agnieszka Chylewska ◽  
Artur Sikorski ◽  
Aleksandra Dąbrowska ◽  
Lech Chmurzyński

AbstractThe title compound, trans-K2[Co(C2O4)2(H2O)2]·4H2O, was synthesised, and characterised by elemental analysis. Acid dissociation constants for the complex were determined by potentiometric titration and calculated by STOICHIO program. The crystal structure of trans-K2[Co(C2O4)2(H2O)2]·4H2O was determined by X-ray diffraction studies. The asymmetric part of the unit cell contains one symmetric anion of oxalate and water molecule bound with Co(II) ion in crystallographic special position, one potassium cation and two molecules of water. Thermal properties of the complex were examined by thermogravimetric analysis (TGA). A decomposition mechanism is proposed on the basis of the results.


Sign in / Sign up

Export Citation Format

Share Document