scholarly journals Power Allocation Optimization Design for the Quadrichromatic LED Based VLC Systems with Illumination Control

Crystals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 169 ◽  
Author(s):  
Yu Zuo ◽  
Jian Zhang ◽  
Jing Qu

For requiring high communication rate and high-quality illumination, multi-color light-emitting diodes (LEDs) have been utilized in visible light communication (VLC) systems and attracted substantial research interests. It should be noted that multiple colors are not independent from each other since they are jointly limited by the chromaticity constraint. Thus, taking full consideration of the multi-color crosstalk problem and actual communication and illumination constraints, this paper formulates a power-efficient illumination control optimization design to reduce power consumption for the quadrichromatic LED (QLED) based VLC systems where signal to interference plus noise ratio (SINR) and quadrangle chromaticity tolerance region constraints should be satisfied. Simulation results illustrate that our proposed optimal power allocation strategy can significantly increase power efficiency for the VLC system compared with the uniform power allocation method. Moreover, the proposed scheme can provide optimal performance under different given correlated color temperature (CCT) values.

2016 ◽  
Vol 4 (24) ◽  
pp. 5787-5794 ◽  
Author(s):  
Xuejing Liu ◽  
Bing Yao ◽  
Zilong Zhang ◽  
Xiaofei Zhao ◽  
Baohua Zhang ◽  
...  

A novel red heteroleptic iridium complex, Ir(DPA-Flpy-CF3)2acac, was synthesized and whose corresponding solution-processed PhOLED shows a record power efficiency of 44.5 lm W−1 with CIE coordinates of (0.64, 0.36).


2018 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Yu Zuo ◽  
Jian Zhang

Visible light communications (VLCs) utilizing multi-color light-emitting diodes (LEDs) can achieve a high modulation bandwidth and high-quality illumination compared with phosphor-converted LEDs, which have attracted much attention. However, the spectrum overlapping of different colors may cause the crosstalk problem, which should be considered in the practical multi-color LED-based VLC systems. Due to the ever-increasing energy consumption, the interest in an energy-saving communication technique has further increased. In this paper, in order to maximize energy efficiency, an optimization problem of the optical power allocation scheme is formulated for the multi-color LED-based VLC systems under the necessary communication requirements and illumination constraints with luminance, chromaticity, and signal to interference plus noise ratio (SINR) constraints. Simulation results indicate that the proposed optimal power allocation scheme can reduce energy consumption while satisfying the illumination and communication requirements.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Cheng-Chang Chen ◽  
Huang-Yu Lin ◽  
Cheng-Hung Li ◽  
Jin-Han Wu ◽  
Zong-Yi Tu ◽  
...  

We demonstrate in this report a new constructive method of fabricating white organic light-emitting devices (OLEDs) with a flexible plastic film embedded with yellow phosphor. The flexible film is composed of polydimethylsiloxane (PDMS) and fabricated by using spin coating followed by peeling technology. From the results, the resultant electroluminescent spectrum shows the white OLED to have chromatic coordinates of 0.38 and 0.54 and correlated color temperature of 4200 K. The warm white OLED exhibits the yield of 10.3 cd/A and the luminous power efficiency of 5.4 lm/W at a luminance of 1000 cd/m2. A desirable Lambertian-like far-field pattern is detected from the white OLEDs with the yellow phosphor containing PDMS film. This method is simple, reproducible, and cost-effective, proving to be a highly feasible approach to realize white OLED.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 239
Author(s):  
Chin-Chuan Huang ◽  
Tsung-Han Weng ◽  
Chun-Liang Lin ◽  
Yan-Kuin Su

White-light-emitting diodes (WLED) based on yttrium aluminum garnet (YAG) phosphors sintered with glass (PiG) and with silicone (PiS) are compared in terms of their light properties, temperature properties and reliability.The complete YAG phosphor was doped with an encapsulant traditional WLED (PiS WLED), and the WLED was covered with PiG (PiG WLED). PiG was made by sintering glass powder and YAG phosphor at the ratio of 87:13 (%), and the correlated color temperature (CCT) was 5564 K. The CCT of the PiG WLED with the YAG doping concentration of 8.5 wt.% approximated 5649 K. The initial light output of the PiG WLED was 6.4% lower than that of the PiS WLED. Under 1008 h and 350 mA aging, PiG WLED and PiS WLED’ light output, CCT and color rendering index variation rates were all within 1%. In the saturated vapor-pressure test, no sample exhibited red ink infiltration, light nor peeling between the encapsulant and the lead-frame. Compared with that of the PiS WLED, the junction temperature of the PiG WLED reduced from 88.4 °C to 81.3 °C. Thermal resistance dropped from 37.4 °C/W to 35.6 °C/W. The PiG WLED presented a better CIE (Commission Internationale de l’Eclairage) 1931 chromaticity coordinate (x,y) concentration and thermal properties than the PiS WLED.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4615
Author(s):  
Dovydas Blazevicius ◽  
Daiva Tavgeniene ◽  
Simona Sutkuviene ◽  
Ernestas Zaleckas ◽  
Ming-Ruei Jiang ◽  
...  

Pyridinyl-carbazole fragments containing low molar mass compounds as host derivatives H1 and H2 were synthesized, investigated, and used for the preparation of electro-phosphorescent organic light-emitting devices (PhOLEDs). The materials demonstrated high stability against thermal decomposition with the decomposition temperatures of 361–386 °C and were suitable for the preparation of thin amorphous and homogeneous layers with very high values of glass transition temperatures of 127–139 °C. It was determined that triplet energy values of the derivatives are, correspondingly, 2.82 eV for the derivative H1 and 2.81 eV for the host H2. The new derivatives were tested as hosts of emitting layers in blue, as well as in green phosphorescent OLEDs. The blue device with 15 wt.% of the iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic) emitter doping ratio in host material H2 exhibited the best overall characteristics with a power efficiency of 24.9 lm/W, a current efficiency of 23.9 cd/A, and high value of 10.3% of external quantum efficiency at 100 cd/m2. The most efficient green PhOLED with 10 wt% of Ir(ppy)3 {tris(2-phenylpyridine)iridium(III)} in the H2 host showed a power efficiency of 34.1 lm/W, current efficiency of 33.9 cd/A, and a high value of 9.4% for external quantum efficiency at a high brightness of 1000 cd/m2, which is required for lighting applications. These characteristics were obtained in non-optimized PhOLEDs under an ordinary laboratory atmosphere and could be improved in the optimization process. The results demonstrate that some of the new host materials are very promising components for the development of efficient phosphorescent devices.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 209
Author(s):  
Gopi Chandra Adhikari ◽  
Saroj Thapa ◽  
Yang Yue ◽  
Hongyang Zhu ◽  
Peifen Zhu

All-inorganic lead halide perovskite (CsPbX3) nanocrystals (NCs) have emerged as a highly promising new generation of light emitters due to their extraordinary photophysical properties. However, the performance of these semiconducting NCs is undermined due to the inherent toxicity of lead and long-term environmental stability. Here, we report the addition of B-site cation and X-site anion (pseudo-halide) concurrently using Ba(SCN)2 (≤50%) in CsPbX3 NCs to reduce the lead and improve the photophysical properties and stability. The as-grown particles demonstrated an analogous structure with an almost identical lattice constant and a fluctuation of particle size without altering the morphology of particles. Photoluminescence quantum yield is enhanced up to near unity (~98%) by taking advantage of concomitant doping at the B- and X-site of the structure. Benefitted from the defect reductions and stronger bonding interaction between Pb2+ and SCN− ions, Ba(SCN)2-based NCs exhibit improved stability towards air and moisture compared to the host NCs. The doped NCs retain higher PLQY (as high as seven times) compared to the host NCs) when stored in an ambient atmosphere for more than 176 days. A novel 3D-printed multiplex color conversion layer was used to fabricate a white light-emitting diode (LED). The obtained white light shows a correlated color temperature of 6764 K, a color rendering index of 87, and luminous efficacy of radiation of 333 lm/W. In summary, this work proposes a facile route to treat sensitive lead halide perovskite NCs and to fabricate LEDs by using a low-cost large-scale 3-D printing method, which would serve as a foundation for fabricating high-quality optoelectronic devices for near future lighting technologies.


Sign in / Sign up

Export Citation Format

Share Document