scholarly journals Do Weeds Hinder the Establishment of Native Plants on a Reclaimed North American Boreal Mine Site?

Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 76
Author(s):  
Kaitlyn E. Trepanier ◽  
Brea Burton ◽  
Bradley D. Pinno

The majority of plant diversity in the boreal forest of northern Alberta, Canada is comprised of native understory plant species that are continuously facing competition from other species, including both undesirable native and weedy species. In oil sands mine reclamation, cover soils rich in organic matter are used to cap overburden materials. The aim of this study is to understand the role of weeds on different reclamation cover soils (forest floor-mineral mix and peat-mineral mix) and determine if they hinder the establishment of the native plant community. This study was conducted four growing seasons after site establishment in June 2019. At that time, both soil types had approximately 45% total cover, had 21 species per plot, and were composed of mainly native vegetation. Competition from non-native forbs (11% average cover, mainly Sonchus arvensis and Melilotus alba) did not seem to impact the development of the native vegetation community on either soil type given the high cover and richness of native forbs. However, native graminoids (predominantly Calamagrostis canadensis) were associated with reduced native forb cover and richness at graminoid cover greater than 17%. Overall, non-native forbs appeared to have little impact on the native forb community on either soil type while native graminoids had a negative influence. We suggest that the classification of what is considered an undesirable weedy species should be evaluated in the context of ecosystem management goals rather than simply the presence of non-native species.

2010 ◽  
Vol 19 (4) ◽  
pp. 490 ◽  
Author(s):  
Erich K. Dodson ◽  
David W. Peterson ◽  
Richy J. Harrod

Slope stabilisation treatments like mulching and seeding are used to increase soil cover and reduce runoff and erosion following severe wildfires, but may also retard native vegetation recovery. We evaluated the effects of seeding and fertilisation on the cover and richness of native and exotic plants and on individual plant species following the 2004 Pot Peak wildfire in Washington State, USA. We applied four seeding and three fertilisation treatments to experimental plots at eight burned sites in spring 2005 and surveyed vegetation during the first two growing seasons after fire. Seeding significantly reduced native non-seeded species richness and cover by the second year. Fertilisation increased native plant cover in both years, but did not affect plant species richness. Seeding and fertilisation significantly increased exotic cover, especially when applied in combination. However, exotic cover and richness were low and treatment effects were greatest in the first year. Seeding suppressed several native plant species, especially disturbance-adapted forbs. Fertilisation, in contrast, favoured several native understorey plant species but reduced tree regeneration. Seeding, even with native species, appears to interfere with the natural recovery of native vegetation whereas fertilisation increases total plant cover, primarily by facilitating native vegetation recovery.


2020 ◽  
Author(s):  
Julissa Rojas-Sandoval

Abstract Neomarica caerulea is a clumping perennial herb often cultivated as an ornamental for its attractive, light green leaves and colourful flowers. It is native to Brazil and also widely cultivated. It has escaped from cultivation and can be found naturalized along roadsides, in abandoned farms and pastures and in disturbed sites in Central America, the Caribbean and South Africa. This species propagates by seed, but also by rhizomes and plantlets. Once established it can form dense colonies that prevent the regeneration of native vegetation and displace native species reducing native plant species richness. Currently it is listed as invasive in Cuba, though its impact is unknown.


Land ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 25
Author(s):  
Kwadwo Omari ◽  
Bradley D. Pinno ◽  
Nicholas Utting ◽  
Edith H.Y. Li

Oil sands surface mining and processing in Alberta generate large volumes of fluid tailings and process water high in salts and metals, which must be reclaimed. We investigated growth of four common plants (two native and two non-native) found in boreal oil sands reclamation sites as influenced by substrate type (tailings cake, and mixtures of cake-sand, cake-peat, and cake-forest floor mineral mix) and water quality (0%, 50%, and 100% oil sands process water). Overall, cake-peat supported the highest aboveground biomass among substrates whereas cake and cake-sand performed poorly, possibly due to high sodium and chloride concentrations. Adding process water to substrates generally reduced growth or increased mortality. Grasses had greater growth than forbs, and for each functional group, non-native species performed better than native species. Hordeum vulgare had the highest overall growth with no mortality followed by Agropyron trachycaulum with negligible (0.5%) mortality. Chamerion angustifolium was most affected by the treatments with the lowest growth and highest mortality (56%). Sonchus arvensis had higher growth than C. angustifolium but its slow growth makes it less suitable for reclaiming tailings. Our results indicate that H. vulgare and A. trachycaulum could be good candidates for use in initial reclamation of oil sands tailings.


Author(s):  
Fernanda Ribeiro da Silva ◽  
Marco Aurélio Pizo

Abstract Restoration aims to rebuild not only species but also the tangled interactions between species that ensure communities perpetuate by themselves. In tropical forests, restoration of seed dispersal interactions is essential because most plant species depend on animals to spread their seeds. A big challenge in restoring such forests is dealing with invasion by non-native species. Non-native plant species may outcompete and eliminate native species from the community, potentially disrupting or arresting the restoration process. Once established, invasive non-native plants are usually incorporated into the local seed dispersal network, potentially causing loss of biodiversity by competition with native species. This chapter reports on a case study of a 25-year old restored forest invaded by several bird-dispersed plant species. We assessed network metrics at the species level to specifically evaluate the role performed by invasive non-native species in the structure of the bird - seed dispersal network. The removal of invasive non-native plants and the re-establishment of native plant communities should be considered for the restoration of habitats invaded by non-native plants. For this reason, we discuss the impacts of removing such non-native plants and explore the consequences for the structure of the overall network. Because restoration areas are open systems, even after the removal of invasive non-native plant species they can return via seed dispersal. So, both the control and management of invasive non-native species would be more effective if planned with a landscape perspective. We also point out relevant management aspects to avoid the negative influence of invasive non-native plants on the seed dispersal interactions occurring between native plant and bird species in restored tropical forests.


Author(s):  
Fernanda Ribeiro da Silva ◽  
◽  
Marco Aurélio Pizo ◽  

Restoration aims to rebuild not only species but also the tangled interactions between species that ensure communities perpetuate by themselves. In tropical forests, restoration of seed dispersal interactions is essential because most plant species depend on animals to spread their seeds. A big challenge in restoring such forests is dealing with invasion by non-native species. Non-native plant species may outcompete and eliminate native species from the community, potentially disrupting or arresting the restoration process. Once established, invasive non-native plants are usually incorporated into the local seed dispersal network, potentially causing loss of biodiversity by competition with native species. This chapter reports on a case study of a 25-year old restored forest invaded by several bird-dispersed plant species. We assessed network metrics at the species level to specifically evaluate the role performed by invasive non-native species in the structure of the bird - seed dispersal network. The removal of invasive non-native plants and the re-establishment of native plant communities should be considered for the restoration of habitats invaded by non-native plants. For this reason, we discuss the impacts of removing such non-native plants and explore the consequences for the structure of the overall network. Because restoration areas are open systems, even after the removal of invasive non-native plant species they can return via seed dispersal. So, both the control and management of invasive non-native species would be more effective if planned with a landscape perspective. We also point out relevant management aspects to avoid the negative influence of invasive non-native plants on the seed dispersal interactions occurring between native plant and bird species in restored tropical forests.


2016 ◽  
Vol 34 (4) ◽  
pp. 455-462 ◽  
Author(s):  
Fernanda LB Mügge ◽  
Juliana Paula-Souza ◽  
Jean C Melo ◽  
Maria GL Brandão

ABSTRACT Given the increasing anthropic threats faced by natural ecosystems all around the world, this work holds an important role by recovering primary information of the Brazilian biodiversity. In this study we discuss data collected at a time when the native vegetation in Brazil was still preserved, and the use of plants was primarily made from species of autoctone flora. Those areas were visited by European naturalists in the 19th century, including the French Auguste de Saint-Hilaire, who described the use of numerous native species. The possibility of current economic use of some species cited by him in the 19th century is discussed.


NeoBiota ◽  
2020 ◽  
Vol 57 ◽  
pp. 109-131
Author(s):  
Judith Bieberich ◽  
Heike Feldhaar ◽  
Marianne Lauerer

The impact of invasive species is often difficult to assess due to species × ecosystem interactions. Impatiens glandulifera heavily invaded several habitat types in Central Europe but its impact on native plant communities is rated ambiguously. One reason could be that the impact differs between habitat types or even between environmentally heterogeneous patches (micro-habitats) within one habitat type. In the present study a vegetation survey was performed within heterogeneous riverside habitats in Germany investigating the impact of I. glandulifera on native vegetation in dependence of environmental conditions. The vegetation was recorded in summer and spring because of seasonal species turnover and thus potentially different impact of the invasive plant. We found that the cover of I. glandulifera depended on environmental conditions resulting in a patchy occurrence. I. glandulifera did not have any impact on plant alpha-diversity but reduced the cover of the native vegetation, especially of the dominant species. This effect depended on micro-habitat and season. The native vegetation was most affected in bright micro-habitats, especially those with a high soil moisture. Not distinguishing between micro-habitats, plant species composition was not affected in summer but in spring. However, environmental conditions had a higher impact on the native vegetation than I. glandulifera. We conclude that within riparian habitats the threat of I. glandulifera to the native vegetation can be rated low since native species were reduced in cover but not excluded from the communities. This might be due to patchy occurrence and year-to-year changes in cover of I. glandulifera. The context-dependency in terms of micro-habitat and season requires specific risk assessments which is also an opportunity for nature conservation to develop management plans specific to the different habitats. Particular attention should be given to habitats that are bright and very wet since the effect of I. glandulifera was strongest in these habitats.


2021 ◽  
Author(s):  
Natalia F Versiani ◽  
Larissa L Bailey ◽  
Nielson Pasqualotto ◽  
Thiago F Rodrigues ◽  
Roberta M Paolino ◽  
...  

Abstract The drastic reduction of the Brazilian Cerrado has transformed this savanna hotspot into vast swaths of commodity-based agriculture fields, mainly soybean, sugarcane, and beef-production pasturelands. The resulting habitat loss and fragmentation are the principal factors underlying population decline of native species inhabiting the Cerrado, particularly those with a high demand for space, low population density, and specialized diet, such as the endangered giant anteater (Myrmecophaga tridactyla). Although the species has been studied in protected areas, we know much less about its ability to endure in disturbed landscapes. Here, we analyzed camera-trapping data to estimate a proxy of habitat use (ψ^; occupancy) and detection probabilities of the giant anteater, identifying environmental covariates influencing these parameters in landscapes with intensive agriculture and commercial forestry. We found this species using about half of the study area (model average ψ^ = 0.51, CI = 0.40–0.62), with two predictors strongly influencing habitat use: protected areas and unpaved roads. In turn, detection probability correlates positively with area of open Cerrado and negatively with area of settlements. The species is more likely to use unpaved roads inside protected areas (ψ^ = 0.90, CI = 0.47–0.75), compared to off road sites in the surrounding areas (ψ^ = 0.19, CI = 0.10–0.34). Our findings indicate that giant anteaters are dependent on nature reserves and native vegetation areas existing on private properties, whose protection is regulated by the Brazilian Native Vegetation Protection Law. Given the relative paucity of state-owned protected areas in the Brazilian Cerrado, increasing the adherence of rural owners to this law is, therefore, key for the conservation of the giant anteater. The intense use of unpaved roads might reflect travelling and/or foraging optimization, a behavioral response that, nevertheless, may compound this species’ susceptibility to suffer mortality from roadkill.


2017 ◽  
Vol 9 (4) ◽  
pp. 86 ◽  
Author(s):  
Cristina A. Gómez-Moya ◽  
Talita P. S. Lima ◽  
Elisângela G. F. Morais ◽  
Manoel G. C. Gondim Jr. ◽  
Gilberto J. De Moraes

The expansion of red palm mite (RPM), Raoiella indica (Acari: Tenuipalpidae) in Brazil could impact negatively the native plant species, especially of the family Arecaceae. To determine which species could be at risk, we investigated the development and reproductive potential of R. indica on 19 plant species including 13 native species to the Brazilian Amazon (12 Arecaceae and one Heliconiaceae), and six exotic species, four Arecaceae, a Musaceae and a Zingiberaceae. Values of the instantaneous rate of increase (ri) were initially estimated at 7, 14, 21 and 28 days after infestation of each species. Higher values of ri (> 0.05) were determined on the Arecaceae Adonidia merrillii, Astrocaryum jauari, Cocos nucifera, Bactris simplicifrons, Mauritia flexuosa, Phoenix dactylifera and Socratea exorrhiza, and on the Heliconiaceae Heliconia psittacorum Sassy; these were classified as “potential primary hosts”. Lower, but still positive values of ri (0-0.05) were determined on the Arecaceae Bactris maraja, Oenocarpus bacaba, Oenocarpus bataua and on the Musaceae Musa × paradisiaca (Prata variety); these were classified as “potential secondary hosts”. Negative values of ri were determined for the remaining plants, i.e., the Arecaceae Astrocaryum aculeatum, Attalea maripa, Bactris gasipaes, Elaeis guineensis, Euterpe oleracea, Euterpe precatoria, and the Zingiberaceae Alpinia rosea; these were considered “non-hosts”. Species with ri < 0.05 were considered not to be threatened by the RPM. Biological parameters of RPM were evaluated on the plant species with positive ri (except B. maraja) and two native species with negative ri (E. oleracea and E. precatoria). Mean developmental time ranged from 14.7 days on C. nucifera to 21.4 days on Musa × paradisiaca, showing a significant influence of the plant substrate. Immature viability, oviposition rate, net reproductive rate (R0) and intrinsic rate of increase (rm) were affected by the plant species.


Sign in / Sign up

Export Citation Format

Share Document