scholarly journals CT Texture Analysis Challenges: Influence of Acquisition and Reconstruction Parameters: A Comprehensive Review

Diagnostics ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 258 ◽  
Author(s):  
Mathilde Espinasse ◽  
Stéphanie Pitre-Champagnat ◽  
Benoit Charmettant ◽  
Francois Bidault ◽  
Andreas Volk ◽  
...  

Texture analysis in medical imaging is a promising tool that is designed to improve the characterization of abnormal images from patients, to ultimately serve as a predictive or prognostic biomarker. However, the nature of image acquisition itself implies variability in each pixel/voxel value that could jeopardize the usefulness of texture analysis in the medical field. In this review, a search was performed to identify current published data for computed tomography (CT) texture reproducibility and variability. On the basis of this analysis, the critical steps were identified with a view of using texture analysis as a reliable tool in medical imaging. The need to specify the CT scanners used and the associated parameters in published studies is highlighted. Harmonizing acquisition parameters between studies is a crucial step for future texture analysis.

Author(s):  
Mona E. Elbashier ◽  
Suhaib Alameen ◽  
Caroline Edward Ayad ◽  
Mohamed E. M. Gar-Elnabi

This study concern to characterize the pancreas areato head, body and tail using Gray Level Run Length Matrix (GLRLM) and extract classification features from CT images. The GLRLM techniques included eleven’s features. To find the gray level distribution in CT images it complements the GLRLM features extracted from CT images with runs of gray level in pixels and estimate the size distribution of thesubpatterns. analyzing the image with Interactive Data Language IDL software to measure the grey level distribution of images. The results show that the Gray Level Run Length Matrix and  features give classification accuracy of pancreashead 89.2%, body 93.6 and the tail classification accuracy 93.5%. The overall classification accuracy of pancreas area 92.0%.These relationships are stored in a Texture Dictionary that can be later used to automatically annotate new CT images with the appropriate pancreas area names.


2020 ◽  
Vol 54 (2) ◽  
pp. 299-311
Author(s):  
A. G. Desnitskiy

More than ten new species of colonial volvocine algae were described in world literature during recent years. In present review, the published data on taxonomy, geographical distribution and the species problem in this group of algae, mainly from the genera Gonium, Pandorina, Eudorina, and Volvox, are critically discussed. There are both cosmopolitan volvocalean species and species with local or disjunct distribution. On the other hand, the description of new cryptic taxa in some genera of the colonial family Volvocaceae, such as Pandorina and Volvox, complicates the preparation of a comprehensive review on their geography.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 417
Author(s):  
Ha Thi Nguyen ◽  
Salah Eddine Oussama Kacimi ◽  
Truc Ly Nguyen ◽  
Kamrul Hassan Suman ◽  
Roselyn Lemus-Martin ◽  
...  

MicroRNAs (miRNAs) are small non-coding RNAs. They can regulate the expression of their target genes, and thus, their dysregulation significantly contributes to the development of cancer. Growing evidence suggests that miRNAs could be used as cancer biomarkers. As an oncogenic miRNA, the roles of miR-21 as a diagnostic and prognostic biomarker, and its therapeutic applications have been extensively studied. In this review, the roles of miR-21 are first demonstrated via its different molecular networks. Then, a comprehensive review on the potential targets and the current applications as a diagnostic and prognostic cancer biomarker and the therapeutic roles of miR-21 in six different cancers in the digestive system is provided. Lastly, a brief discussion on the challenges for the use of miR-21 as a therapeutic tool for these cancers is added.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Olalekan A. Balogun-Agbaje ◽  
Olubusola A. Odeniyi ◽  
Michael A. Odeniyi

Abstract Background Poly-γ-glutamic acid (γ-PGA) is a biopolymer of microbial origin, consisting of repeating units of l-glutamic acid and/or D-glutamic acid. The biopolymer has found use in the fields of agriculture, food, wastewater, and medicine, owing to its non-toxic, biodegradable, and biocompatible properties. Due to its biodegradability, γ-PGA is being tipped to dislodge synthetic plastics in drug delivery application. High cost of production, relative to plastics, is however a clog in the wheel of achieving this. Main body of abstract This review looked at the production, nanoparticles fabrication, and drug delivery application of γ-PGA. γ-PGA production optimization by modifying the fermentation medium to tailor towards the production of desirable polymer at reduced cost and techniques for the formulation of γ-PGA nanoparticle as well as its characterization were discussed. This review also evaluated the application of γ-PGA and its nanoparticles in the delivery of drugs to action site. Characterization of γ-PGA and its nanoparticles is a crucial step towards determining the applicability of the biopolymer. γ-PGA has been used in the delivery of active agents to action sites. Conclusion This review highlights some of the efforts that have been made in the appraisal of γ-PGA and its nanoparticles for drug delivery. γ-PGA is a candidate for future extensive use in drug delivery.


2018 ◽  
Vol 55 (10) ◽  
pp. 1451-1474 ◽  
Author(s):  
Yousef Ansari ◽  
George Kouretzis ◽  
Scott W. Sloan

This paper presents a testing rig for measuring the reactions on rigid pipes buried in sand during episodes of relative displacement. Following a detailed presentation of the 1g prototype, the test preparation procedure, and the characterization of the test sand’s shear strength and dilation potential under the low confining stresses pertinent to the problem, the paper focuses on the workflow devised to obtain accurate measurements of friction and arching effects, and accordingly normalize them to account for scale (stress level) effects. Emphasis is put on demonstrating the effectiveness of the sand deposition method for accurately controlling the density of the sample, and on quantitatively assessing its uniformity. Measurements obtained during a series of uplift tests, including reaction force – pipe displacement curves and images of the developing failure surface, facilitated by particle image velocimetry and close-range photogrammetry techniques, are compared against published data and analytical methods. The results lead to the development of a new simplified formula for calculating the uplift resistance to buried pipe movements in sand: capable of accounting for scale effects, yet simple enough to be used for the analysis of pipes in practice.


2016 ◽  
Vol 83 (5) ◽  
pp. AB511-AB512
Author(s):  
Sayf A. Bala ◽  
Vivek Kaul ◽  
Truptesh H. Kothari ◽  
Shivangi Kothari

Measurement ◽  
2014 ◽  
Vol 47 ◽  
pp. 130-144 ◽  
Author(s):  
Samik Dutta ◽  
Kaustav Barat ◽  
Arpan Das ◽  
Swapan Kumar Das ◽  
A.K. Shukla ◽  
...  

2000 ◽  
Author(s):  
Qingwen Ni ◽  
J. Derwin King ◽  
Xiaodu Wang

Abstract Previous studies have shown that the overall porosity of bone has a significant effect on the mechanical strength of bone. In a comprehensive review on porosity of bone, Martin [1] described that small changes in porosity would lead to significant changes in the stiffness and strength of both compact and spongy bone. In a recently study, McCalden [2], reported that the porosity of bone has a significant effect to absorb energy during fracture. Since changes in numbers and sizes of these natural cavities are directly related to the remodeling processes and biomechanical properties of bone, a direct sensing technique to detect such changes in bone has been long wanted.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1061 ◽  
Author(s):  
Liying Li ◽  
Kedong Song ◽  
Yongzhi Chen ◽  
Yiwei Wang ◽  
Fangxin Shi ◽  
...  

Nowadays, microcarriers are widely utilized in drug delivery, defect filling, and cell culture. Also, many researchers focus on the combination of synthetic and natural polymers and bioactive ceramics to prepare composite biomaterials for tissue engineering and regeneration. In this study, three kinds of microcarriers were prepared based on physical doping and surface modification, named Poly (l-lactic) acid (PLLA), PLLA/nanohydroxyapatite (PLLA/nHA), and PLLA/nHA/Chitosan (PLLA/nHA/Ch). The physicochemical properties of the microcarriers and their functional performances in MC3T3-E1 cell culture were compared. Statistical results showed that the average diameter of PLLA microcarriers was 291.9 ± 30.7 μm, and that of PLLA/nHA and PLLA/nHA/Ch microcarriers decreased to 275.7 ± 30.6 μm and 269.4 ± 26.3 μm, respectively. The surface roughness and protein adsorption of microcarriers were enhanced with the doping of nHA and coating of chitosan. The cell-carrier cultivation stated that the PLLA/nHA microcarriers had the greatest proliferation-promoting effect, while the PLLA/nHA/Ch microcarriers performed the strongest attachment with MC3T3-E1 cells. Besides, the cells on the PLLA/nHA/Ch microcarriers exhibited optimal osteogenic expression. Generally, chitosan was found to improve microcarriers with superior characteristics in cell adhesion and differentiation, and nanohydroxyapatite was beneficial for microcarriers regarding sphericity and cell proliferation. Overall, the modified microcarriers may be considered as a promising tool for bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document