scholarly journals Towards a Microwave Imaging System for Continuous Monitoring of Liver Tumor Ablation: Design and In Silico Validation of an Experimental Setup

Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 866
Author(s):  
Mengchu Wang ◽  
Rosa Scapaticci ◽  
Marta Cavagnaro ◽  
Lorenzo Crocco

Liver cancer is one of the most common liver malignancies worldwide. Thermal ablation has been recognized as a promising method for its treatment, with a significant impact on clinical practice. However, the treatment’s effectiveness is heavily dependent on the experience of the clinician and would improve if paired with an image-guidance device for treatment monitoring. Conventional imaging modalities, such as computed tomography, ultrasound, and magnetic resonance imaging, show some disadvantages, motivating interest in alternative technologies. In this framework, microwave imaging was recently proposed as a potential candidate, being capable of implementing real-time monitoring by means of low-cost and portable devices. In this work, the in silico assessment of a microwave imaging device specifically designed for liver ablation monitoring is presented. To this end, an imaging experiment involving eight Vivaldi antennas in an array configuration and a practically realizable liver phantom mimicking the evolving treatment was simulated. In particular, since the actual phantom will be realized by 3D printing technology, the effect of the plastic shells containing tissues mimicking materials was investigated and discussed. The outcomes of this study confirm that the presence of printing materials does not impair the significance of the experiments and that the designed device is capable of providing 3D images of the ablated region conveying information on its extent and evolution. Moreover, the observed results suggest possible improvements to the system, paving the way for the next stage in which the device will be implemented and experimentally assessed in the same conditions as those simulated in this study.

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1762
Author(s):  
Yuki Gao ◽  
Maryam Ravan ◽  
Reza K. Amineh

The use of non-metallic pipes and composite components that are low-cost, durable, light-weight, and resilient to corrosion is growing rapidly in various industrial sectors such as oil and gas industries in the form of non-metallic composite pipes. While these components are still prone to damages, traditional non-destructive testing (NDT) techniques such as eddy current technique and magnetic flux leakage technique cannot be utilized for inspection of these components. Microwave imaging can fill this gap as a favorable technique to perform inspection of non-metallic pipes. Holographic microwave imaging techniques are fast and robust and have been successfully employed in applications such as airport security screening and underground imaging. Here, we extend the use of holographic microwave imaging to inspection of multiple concentric pipes. To increase the speed of data acquisition, we utilize antenna arrays along the azimuthal direction in a cylindrical setup. A parametric study and demonstration of the performance of the proposed imaging system will be provided.


2015 ◽  
Vol 4 (4) ◽  
pp. 393-403
Author(s):  
Mohammad Asefi ◽  
Lutfi Albasha ◽  
Nasser Qaddoumi ◽  
Soudeh Heydari

Author(s):  
Daniele Jahier Pagliari ◽  
Azzurra Pulimeno ◽  
Marco Vacca ◽  
Jorge A. Tobon ◽  
Francesca Vipiana ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
M. T. Islam ◽  
M. Z. Mahmud ◽  
M. Tarikul Islam ◽  
S. Kibria ◽  
M. Samsuzzaman

Abstract Globally, breast cancer is a major reason for female mortality. Due to the limitations of current clinical imaging, the researchers are encouraged to explore alternative and complementary tools to available techniques to detect the breast tumor in an earlier stage. This article outlines a new, portable, and low-cost microwave imaging (MWI) system using an iterative enhancing technique for breast imaging. A compact side slotted tapered slot antenna is designed for microwave imaging. The radiating fins of tapered slot antenna are modified by etching nine rectangular side slots. The irregular slots on the radiating fins enhance the electrical length as well as produce strong directive radiation due to the suppression of induced surface currents that radiate vertically at the outer edges of the radiating arms with end-fire direction. It has remarkable effects on efficiency and gain. With the addition of slots, the side-lobe levels are reduced, the gain of the main-lobe is increased and corrects the squint effects simultaneously, thus improving the characteristics of the radiation. For experimental validation, a heterogeneous breast phantom was developed that contains dielectric properties identical to real breast tissues with the inclusion of tumors. An alternative PC controlled and microcontroller-based mechanical MWI system is designed and developed to collect the antenna scattering signal. The radiated backscattered signals from the targeted area of the human body are analyzed to reveal the changes in dielectric properties in tissues. The dielectric constants of tumorous cells are higher than that of normal tissues due to their higher water content. The remarkable deviation of the scattered field is processed by using newly proposed Iteratively Corrected Delay and Sum (IC-DAS) algorithm and the reconstruction of the image of the phantom interior is done. The developed UWB (Ultra-Wideband) antenna based MWI has been able to perform the detection of tumorous cells in breast phantom that can pave the way to saving lives.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 373
Author(s):  
Mark D. Francisco ◽  
Wen-Fan Chen ◽  
Cheng-Tang Pan ◽  
Ming-Cheng Lin ◽  
Zhi-Hong Wen ◽  
...  

In this study, near-infrared (NIR) technology was utilized to develop a low-cost real-time near infrared (NIR) guiding device for cannulation. A portable device that can be used by medical practitioners and also by students for their skills development training in performing cannulation. Methods. First, is the development of a reflectance type optical vein finder using three (3) light emitting diode (LED) lights with 960 nm wavelength, complementary metal-oxide-semiconductor-infrared (CMOS-IR) sensor camera with 1920 × 1080 UXGA (1080P), IR filter set for the given wavelength, and an open-source image processing software. Second, is the actual in-vitro human testing in two sites: the arm and dorsal hand of 242 subjects. The following parameters were included, such as gender, age, mass index (BMI), and skin tone. In order to maximize the assessment process towards the device, the researchers included the arm circumference. This augmented subcutaneous vein imaging study using the develop vein finder device compared the difference in the captured vein images through visual and digital imaging approaches. The human testing was performed in accordance with the ethical standards of the Trinity University of Asia—Institutional Ethics Review Committee (TUA—IERC). Results. The NIR imaging system of the developed vein finder in this study showed its capability as an efficient guiding device through real-time vein pattern recognition, for both sites. Improved captured vein images were observed, having 100% visibility of vein patterns on the dorsal hand site. Fourteen (5.79%) out of 242 subjects reported non-visible peripheral subcutaneous veins in the arm sites. Conclusions. The developed vein finder device with the NIR technology and reflected light principle with low-energy consumption was efficient for real-time peripheral subcutaneous vein imaging without the application of a tourniquet. This might be utilized as a guiding device in locating the vein for the purpose of cannulation, at a very low cost as compared to the commercially available vein finders. Moreover, it may be used as an instructional device for student training in performing cannulation.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 533
Author(s):  
Aleksandar Janjic ◽  
Mehmet Cayoren ◽  
Ibrahim Akduman ◽  
Tuba Yilmaz ◽  
Emre Onemli ◽  
...  

SAFE (Scan and Find Early) is a novel microwave imaging device intended for breast cancer screening and early detection. SAFE is based on the use of harmless electromagnetic waves and can provide relevant initial diagnostic information without resorting to X-rays. Because of SAFE’s harmless effect on organic tissue, imaging can be performed repeatedly. In addition, the scanning process itself is not painful since breast compression is not required. Because of the absence of physical compression, SAFE can also detect tumors that are close to the thoracic wall. A total number of 115 patients underwent the SAFE scanning procedure, and the resultant images were compared with available magnetic resonance (MR), ultrasound, and mammography images in order to determine the correct detection rate. A sensitivity of 63% was achieved. Breast size influenced overall sensitivity, as sensitivity was lower in smaller breasts (51%) compared to larger ones (74%). Even though this is only a preliminary study, the results show promising concordance with clinical reports, thus encouraging further SAFE clinical studies.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1036 ◽  
Author(s):  
Hailun Wu ◽  
Reza K. Amineh

With the significant growth in the use of non-metallic composite materials, the demands for new and robust non-destructive testing methodologies is high. Microwave imaging has attracted a lot of attention recently for such applications. This is in addition to the biomedical imaging applications of microwave that are also being pursued actively. Among these efforts, in this paper, we propose a compact and cost-effective three-dimensional microwave imaging system based on a fast and robust holographic technique. For this purpose, we employ narrow-band microwave data, instead of wideband data used in previous three-dimensional cylindrical holographic imaging systems. Three-dimensional imaging is accomplished by using an array of receiver antennas surrounding the object and scanning that along with a transmitter antenna over a cylindrical aperture. To achieve low cost and compact size, we employ off-the-shelf components to build a data acquisition system replacing the costly and bulky vector network analyzers. The simulation and experimental results demonstrate the satisfactory performance of the proposed imaging system. We also show the effect of number of frequencies and size of the objects on the quality of reconstructed images.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7166
Author(s):  
Mitsuru Hattori ◽  
Sumito Shirane ◽  
Tomoki Matsuda ◽  
Kuniaki Nagayama ◽  
Takeharu Nagai

Current smartphones equipped with high-sensitivity and high-resolution sensors in the camera can respond to the needs of low-light imaging, streaming acquisition, targets of various scales, etc. Therefore, a smartphone has great potential as an imaging device even in the scientific field and has already been introduced into biomolecular imaging using fluorescence tags. However, owing to the necessity of an excitation light source, fluorescence methods impair its mobility. Bioluminescence does not require illumination; therefore, imaging with a smartphone camera is compact and requires minimal devices, thus making it suitable for personal and portable imaging devices. Here, we report smartphone-based methods to observe biological targets in various scales using bioluminescence. In particular, we demonstrate, for the first time, that bioluminescence can be observed in an organelle in a single living cell using a smartphone camera by attaching a detachable objective lens. Through capturing color changes with the camera, changes in the amount of target molecules was detected using bioluminescent indicators. The combination of bioluminescence and a mobile phone makes possible a compact imaging system without an external light source and expands the potential of portable devices.


Author(s):  
Renato Cicchetti ◽  
Valentina Cicchetti ◽  
Sandra Costanzo ◽  
Paolo D'Atanasio ◽  
Alessandro Fedeli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document