scholarly journals A Low-Cost and Compact Three-Dimensional Microwave Holographic Imaging System

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1036 ◽  
Author(s):  
Hailun Wu ◽  
Reza K. Amineh

With the significant growth in the use of non-metallic composite materials, the demands for new and robust non-destructive testing methodologies is high. Microwave imaging has attracted a lot of attention recently for such applications. This is in addition to the biomedical imaging applications of microwave that are also being pursued actively. Among these efforts, in this paper, we propose a compact and cost-effective three-dimensional microwave imaging system based on a fast and robust holographic technique. For this purpose, we employ narrow-band microwave data, instead of wideband data used in previous three-dimensional cylindrical holographic imaging systems. Three-dimensional imaging is accomplished by using an array of receiver antennas surrounding the object and scanning that along with a transmitter antenna over a cylindrical aperture. To achieve low cost and compact size, we employ off-the-shelf components to build a data acquisition system replacing the costly and bulky vector network analyzers. The simulation and experimental results demonstrate the satisfactory performance of the proposed imaging system. We also show the effect of number of frequencies and size of the objects on the quality of reconstructed images.

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1762
Author(s):  
Yuki Gao ◽  
Maryam Ravan ◽  
Reza K. Amineh

The use of non-metallic pipes and composite components that are low-cost, durable, light-weight, and resilient to corrosion is growing rapidly in various industrial sectors such as oil and gas industries in the form of non-metallic composite pipes. While these components are still prone to damages, traditional non-destructive testing (NDT) techniques such as eddy current technique and magnetic flux leakage technique cannot be utilized for inspection of these components. Microwave imaging can fill this gap as a favorable technique to perform inspection of non-metallic pipes. Holographic microwave imaging techniques are fast and robust and have been successfully employed in applications such as airport security screening and underground imaging. Here, we extend the use of holographic microwave imaging to inspection of multiple concentric pipes. To increase the speed of data acquisition, we utilize antenna arrays along the azimuthal direction in a cylindrical setup. A parametric study and demonstration of the performance of the proposed imaging system will be provided.


2020 ◽  
Vol 14 (4) ◽  
pp. 411-415
Author(s):  
Emine Avşar Aydin ◽  
Selin Yabaci Karaoğlan

Microwave imaging provides an alternative method for breast cancer screening and the diagnosis of cerebrovascular accidents. Before a surgical operation, the performance of microwave imaging systems should be evaluated on anatomically detailed anthropomorphic phantoms. This paper puts forward the advances in the development of breast phantoms based on 3D printing structures filled with liquid solutions that mimic biological tissues in terms of complex permittivity in a wide microwave frequency band. In this paper; four different experimental scenarios were created, and measurements were performed, and although there are many vector network analyzers on the market, the miniVNA used in this study has been shown to have potential in many biomedical applications such as portable computer-based breast cancer detection studies. We especially investigated the reproducibility of a particular mixture and the ability of some mixes to mimic various breast tissues. Afterwards, the images similar to the experimentally created scenarios were obtained by implementing the inverse radon transform to the obtained data.


2017 ◽  
Vol 57 (1) ◽  
pp. A65
Author(s):  
Vahid Amin Nili ◽  
Ehsan Mansouri ◽  
Zahra Kavehvash ◽  
Mohammad Fakharzadeh ◽  
Mahdi Shabany ◽  
...  

Author(s):  
S. Kolokytha ◽  
R. Speller ◽  
S. Robson

This study describes a cost-effective check-in baggage screening system, based on "on-belt tomosynthesis" (ObT) and close-range photogrammetry, that is designed to address the limitations of the most common system used, conventional projection radiography. The latter's limitations can lead to loss of information and an increase in baggage handling time, as baggage is manually searched or screened with more advanced systems. This project proposes a system that overcomes such limitations creating a cost-effective automated pseudo-3D imaging system, by combining x-ray and optical imaging to form digital tomograms. Tomographic reconstruction requires a knowledge of the change in geometry between multiple x-ray views of a common object. This is uniquely achieved using a close range photogrammetric system based on a small network of web-cameras. This paper presents the recent developments of the ObT system and describes recent findings of the photogrammetric system implementation. Based on these positive results, future work on the advancement of the ObT system as a cost-effective pseudo-3D imaging of hold baggage for airport security is proposed.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000548-000553
Author(s):  
Zhaozhi Li ◽  
Brian J. Lewis ◽  
Paul N. Houston ◽  
Daniel F. Baldwin ◽  
Eugene A. Stout ◽  
...  

Three Dimensional (3D) Packaging has become an industry obsession as the market demand continues to grow toward higher packaging densities and smaller form factor. In the meanwhile, the 3D die-to-wafer (D2W) packaging structure is gaining popularity due to its high manufacturing throughput and low cost per package. In this paper, the development of the assembly process for a 3D die-to-wafer packaging technology, that leverages the wafer level assembly technique and flip chip process, is introduced. Research efforts were focused on the high-density flip chip wafer level assembly techniques, as well as the challenges, innovations and solutions associated with this type of 3D packaging technology. Processing challenges and innovations addressed include flip chip fluxing methods for very fine-pitch and small bump sizes; wafer level flip chip assembly program creation and yield improvements; and set up of the Pb-free reflow profile for the assembled wafer. 100% yield was achieved on the test vehicle wafer that has totally 1,876 flip chip dies assembled on it. This work has demonstrated that the flip chip 3D die-to-wafer packaging architecture can be processed with robust yield and high manufacturing throughput, and thus to be a cost effective, rapid time to market alternative to emerging 3D wafer level integration methodologies.


2018 ◽  
Vol 52 (25) ◽  
pp. 3429-3444 ◽  
Author(s):  
Ezequiel Buenrostro ◽  
Daniel Whisler

Three-dimensional fiber-reinforced foam cores may have improved mechanical properties under specific strain rates and fiber volumes. But its performance as a core in a composite sandwich structure has not been fully investigated. This study explored different manufacturing techniques for the three-dimensional fiber-reinforced foam core using existing literature as a guideline to provide a proof of concept for a low-cost and easily repeatable method comprised of readily available materials. The mechanical properties of the fiber-reinforced foam were determined using a three-point bend test and compared to unreinforced polyurethane foam. The foam was then used in a sandwich panel and subjected to dynamic loading by means of a gas gun (103 s−1). High-strain impact tests validated previously published studies by showing, qualitatively and quantitatively, an 18–20% reduction in the maximum force experienced by the fiber-reinforced core and its ability to dissipate the impact force in the foam core sandwich panel. The results show potential for this cost-effective manufacturing method to produce an improved composite foam core sandwich panel for applications where high-velocity impacts are probable. This has the potential to reduce manufacturing and operating costs while improving performance.


Buildings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 187
Author(s):  
Efstathios Adamopoulos ◽  
Monica Volinia ◽  
Mario Girotto ◽  
Fulvio Rinaudo

Thermal infrared imaging is fundamental to architectural heritage non-destructive diagnostics. However, thermal sensors’ low spatial resolution allows capturing only very localized phenomena. At the same time, thermal images are commonly collected with independence of geometry, meaning that no measurements can be performed on them. Occasionally, these issues have been solved with various approaches integrating multi-sensor instrumentation, resulting in high costs and computational times. The presented work aims at tackling these problems by proposing a workflow for cost-effective three-dimensional thermographic modeling using a thermal camera and a consumer-grade RGB camera. The discussed approach exploits the RGB spectrum images captured with the optical sensor of the thermal camera and image-based multi-view stereo techniques to reconstruct architectural features’ geometry. The thermal and optical sensors are calibrated employing custom-made low-cost targets. Subsequently, the necessary geometric transformations between undistorted thermal infrared and optical images are calculated to replace them in the photogrammetric scene and map the models with thermal texture. The method’s metric accuracy is evaluated by conducting comparisons with different sensors and the efficiency by assessing how the results can assist the better interpretation of the present thermal phenomena. The conducted application demonstrates the metric and radiometric performance of the proposed approach and the straightforward implementability for thermographic surveys, as well as its usefulness for cost-effective historical building assessments.


2020 ◽  
Vol 6 (8) ◽  
pp. 76
Author(s):  
Claudia Daffara ◽  
Riccardo Muradore ◽  
Nicola Piccinelli ◽  
Nicola Gaburro ◽  
Tullio de Rubeis ◽  
...  

Three-dimensional (3D) imaging and infrared (IR) thermography are powerful tools in many areas in engineering and sciences. Their joint use is of great interest in the buildings sector, allowing inspection and non-destructive testing of elements as well as an evaluation of the energy efficiency. When dealing with large and complex structures, as buildings (particularly historical) generally are, 3D thermography inspection is enhanced by Unmanned Aerial Vehicles (UAV—also known as drones). The aim of this paper is to propose a simple and cost-effective system for aerial 3D thermography of buildings. Special attention is thus payed to instrument and reconstruction software choice. After a very brief introduction to IR thermography for buildings and 3D thermography, the system is described. Some experimental results are given to validate the proposal.


2015 ◽  
Vol 4 (4) ◽  
pp. 393-403
Author(s):  
Mohammad Asefi ◽  
Lutfi Albasha ◽  
Nasser Qaddoumi ◽  
Soudeh Heydari

1999 ◽  
Vol 103 (1027) ◽  
pp. 443-447 ◽  
Author(s):  
W. McMillan ◽  
M. Woodgate ◽  
B. E. Richards ◽  
B. J. Gribben ◽  
K. J. Badcock ◽  
...  

Abstract Motivated by a lack of sufficient local and national computing facilities for computational fluid dynamics simulations, the Affordable Systems Computing Unit (ASCU) was established to investigate low cost alternatives. The options considered have all involved cluster computing, a term which refers to the grouping of a number of components into a managed system capable of running both serial and parallel applications. The present work aims to demonstrate the utility of commodity processors for dedicated batch processing. The performance of the cluster has proved to be extremely cost effective, enabling large three dimensional flow simulations on a computer costing less than £25k sterling at current market prices. The experience gained on this system in terms of single node performance, message passing and parallel performance will be discussed. In particular, comparisons with the performance of other systems will be made. Several medium-large scale CFD simulations performed using the new cluster will be presented to demonstrate the potential of commodity processor based parallel computers for aerodynamic simulation.


Sign in / Sign up

Export Citation Format

Share Document