scholarly journals The Biological Roles of lncRNAs and Future Prospects in Clinical Application

Diseases ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Guohui Li ◽  
Liang Deng ◽  
Nan Huang ◽  
Fenyong Sun

Chemo and radiation therapies are the most commonly used therapies for cancer, but they can induce DNA damage, resulting in the apoptosis of host cells. DNA double-stranded breaks (DSBs) are the most lethal form of DNA damage in cells, which are constantly caused by a wide variety of genotoxic agents, both environmentally and endogenously. To maintain genomic integrity, eukaryotic organisms have developed a complex mechanism for the repair of DNA damage. Researches reported that many cellular long noncoding RNAs (lncRNAs) were involved in the response of DNA damage. The roles of lncRNAs in DNA damage response can be regulated by the dynamic modification of N6-adenosine methylation (m6A). The cellular accumulation of DNA damage can result in various diseases, including cancers. Additionally, lncRNAs also play roles in controlling the gene expression and regulation of autophagy, which are indirectly involved with individual development. The dysregulation of these functions can facilitate human tumorigenesis. In this review, we summarized the origin and overview function of lncRNAs and highlighted the roles of lncRNAs involved in the repair of DNA damage.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Haohan Zhuang ◽  
Chaoqun Yao ◽  
Xianfeng Zhao ◽  
Xueqiu Chen ◽  
Yimin Yang ◽  
...  

Abstract Background Toxoplasma gondii is an obligate parasite of all warm-blooded animals around the globe. Once infecting a cell, it manipulates the host’s DNA damage response that is yet to be elucidated. The objectives of the present study were three-fold: (i) to assess DNA damages in T. gondii-infected cells in vitro; (ii) to ascertain causes of DNA damage in T. gondii-infected cells; and (iii) to investigate activation of DNA damage responses during T. gondii infection. Methods HeLa, Vero and HEK293 cells were infected with T. gondii at a multiplicity of infection (MOI) of 10:1. Infected cells were analyzed for a biomarker of DNA double-strand breaks (DSBs) γH2AX at 10 h, 20 h or 30 h post-infection using both western blot and immunofluorescence assay. Reactive oxygen species (ROS) levels were measured using 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA), and ROS-induced DNA damage was inhibited by a ROS inhibitor N-acetylcysteine (NAC). Lastly, DNA damage responses were evaluated by detecting the active form of ataxia telangiectasia mutated/checkpoint kinase 2 (ATM/CHK2) by western blot. Results γH2AX levels in the infected HeLa cells were significantly increased over time during T. gondii infection compared to uninfected cells. NAC treatment greatly reduced ROS and concomitantly diminished γH2AX in host cells. The phosphorylated ATM/CHK2 were elevated in T. gondii-infected cells. Conclusions Toxoplasma gondii infection triggered DNA DSBs with ROS as a major player in host cells in vitro. It also activated DNA damage response pathway ATM/CHK2. Toxoplasma gondii manages to keep a balance between survival and apoptosis of its host cells for the benefit of its own survival.


2021 ◽  
Author(s):  
Joshua Victor ◽  
Jamie Deutsch ◽  
Annalis Whitaker ◽  
Erica N. Lamkin ◽  
Anthony March ◽  
...  

AbstractThe novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus responsible for the current COVID-19 pandemic and has now infected more than 200 million people with more than 4 million deaths globally. Recent data suggest that symptoms and general malaise may continue long after the infection has ended in recovered patients, suggesting that SARS-CoV-2 infection has profound consequences in the host cells. Here we report that SARS-CoV-2 infection can trigger a DNA damage response (DDR) in African green monkey kidney cells (Vero E6). We observed a transcriptional upregulation of the Ataxia telangiectasia and Rad3 related protein (ATR) in infected cells. In addition, we observed enhanced phosphorylation of CHK1, a downstream effector of the ATR DNA damage response, as well as H2AX. Strikingly, SARS-CoV-2 infection lowered the expression of TRF2 shelterin-protein complex, and reduced telomere lengths in infected Vero E6 cells. Thus, our observations suggest SARS-CoV-2 may have pathological consequences to host cells beyond evoking an immunopathogenic immune response.


2018 ◽  
Author(s):  
Inna Ricardo-Lax ◽  
Karin Broennimann ◽  
Julia Adler ◽  
Eleftherios Michailidis ◽  
Ype P de Jong ◽  
...  

AbstractHepatitis B virus infects non-dividing cells in which dNTPs are scarce. HBV replication requires dNTPs. To cope with this constraint the virus induces the DNA damage response (DDR) pathway culminating in RNR-R2 expression and the generation of an active RNR holoenzyme, the key regulator of dNTP levels. Previously we reported that the HBx open reading frame (ORF) triggers this pathway. Unexpectedly however, we report here that the production of HBx protein is not essential. We found that a small region of 125 bases within the HBx transcript is sufficient to induce RNR-R2 expression in growth arrested HepG2 cells and in primary human hepatocytes (PHH). The observed HBx embedded regulatory element is named ERE. We demonstrate that ERE is functional as a positive strand RNA polymerase-II transcript. Remarkably, ERE is sufficient to induce the Chk1-E2F1-RNR-R2 DDR pathway, previously reported to be activated by HBV. Furthermore, we found that ERE activates ATR but not ATM in eliciting this DDR pathway in upregulating RNR-R2. These findings demonstrate the multitasking role of HBV transcripts in mediating virus-host cell interaction, a mechanism that explains how such a small genome effectively serves such a pervasive virus.Author summaryThe hepatitis B virus (HBV) infects the human liver and over 250 million people worldwide are chronically infected with HBV and at risk for cirrhosis and liver cancer. HBV has a very small DNA genome with only four genes, much fewer than other viruses. For propagation the virus consumes dNTPs, the building blocks of DNA, in much higher amounts than the infected cells provide. To cope with this constraint, the virus manipulates the cells to increase the production of dNTPs. We found that the virus activates the cellular response to DNA damage upon which the cells increase the production of dNTPs, but instead of repairing cellular DNA, the virus uses them for production of its own DNA. Usually viruses manipulate host cells with one or more of their unique proteins, however the small HBV genome cannot afford having such a unique gene and protein. Instead, we found that here the virus relies on RNA to manipulate the host cells. Our findings highlight the unprecedented principle of a multitasking viral RNA that is not only designed to be translated into proteins but also harbors an independent role in activating the cellular DNA damage response.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maria L. Alomar ◽  
Juan G. Yañuk ◽  
Sergio O. Angel ◽  
M. Micaela Gonzalez ◽  
Franco M. Cabrerizo

Toxoplasmosis is one of the most prevalent and neglected zoonotic global diseases caused by Toxoplasma gondii. The current pharmacological treatments show clinical limitations, and therefore, the search for new drugs is an urgent need in order to eradicate this infection. Due to their intrinsic biological activities, β-carboline (βC) alkaloids might represent a good alternative that deserves further investigations. In this context, the in vitro anti-T. gondii activity of three βCs, harmine (1), 2-methyl-harminium (2), and 9-methyl-harmine (3), was evaluated herein. Briefly, the three alkaloids exerted direct effects on the parasite invasion and/or replication capability. Replication rates of intracellular treated tachyzoites were also affected in a dose-dependent manner, at noncytotoxic concentrations for host cells. Additionally, cell cycle analysis revealed that both methyl-derivatives 2 and 3 induce parasite arrest in S/M phases. Compound 3 showed the highest irreversible parasite growth inhibition, with a half maximal inhibitory concentration (IC50) value of 1.8 ± 0.2 μM and a selectivity index (SI) of 17.2 at 4 days post infection. Due to high replication rates, tachyzoites are frequently subjected to DNA double-strand breaks (DSBs). This highly toxic lesion triggers a series of DNA damage response reactions, starting with a kinase cascade that phosphorylates a large number of substrates, including the histone H2A.X to lead the early DSB marker γH2A.X. Western blot studies showed that basal expression of γH2A.X was reduced in the presence of 3. Interestingly, the typical increase in γH2A.X levels produced by camptothecin (CPT), a drug that generates DSB, was not observed when CPT was co-administered with 3. These findings suggest that 3 might disrupt Toxoplasma DNA damage response.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1146
Author(s):  
Laura A. Huff ◽  
Shan Yan ◽  
Mark G. Clemens

Cells have evolved extensive signaling mechanisms to maintain redox homeostasis. While basal levels of oxidants are critical for normal signaling, a tipping point is reached when the level of oxidant species exceed cellular antioxidant capabilities. Myriad pathological conditions are characterized by elevated oxidative stress, which can cause alterations in cellular operations and damage to cellular components including nucleic acids. Maintenance of nuclear chromatin are critically important for host survival and eukaryotic organisms possess an elaborately orchestrated response to initiate repair of such DNA damage. Recent evidence indicates links between the cellular antioxidant response, the DNA damage response (DDR), and the epigenetic status of the cell under conditions of elevated oxidative stress. In this emerging model, the cellular response to excessive oxidants may include redox sensors that regulate both the DDR and an orchestrated change to the epigenome in a tightly controlled program that both protects and regulates the nuclear genome. Herein we use sepsis as a model of an inflammatory pathophysiological condition that results in elevated oxidative stress, upregulation of the DDR, and epigenetic reprogramming of hematopoietic stem cells (HSCs) to discuss new evidence for interplay between the antioxidant response, the DNA damage response, and epigenetic status.


2020 ◽  
Author(s):  
Benoît J. Pons ◽  
Aurélie Pettes-Duler ◽  
Claire Naylies ◽  
Frédéric Taieb ◽  
Saleha Hashim ◽  
...  

AbstractThe Cytolethal Distending Toxin (CDT) is a bacterial genotoxin that activates the DNA damage response and induces inflammatory signatures in host cells, but the precise relationship between these outcomes has not been addressed so far. CDT induces a singular time-dependent increase of DNA damage and cell cycle defects, questioning on possible impaired response to this toxin over the cell cycle. Here, we identify mitosis as a crucial phase during CDT intoxination. Despite active cell cycle checkpoints and in contrast to other DNA damaging agents, CDT-exposed cells reach mitosis where they accumulate massive DNA damage, resulting in chromosome fragmentation and micronucleus formation. These micronuclei are recognized by cGAS that elicits an inflammatory signature resulting in cell distention and senescence. Our results unravel for the first time the mitotic consequences of CDT genotoxic activity and relate them to pro-inflammatory cellular response. These findings may have important implications during bacterial infection regarding CDT-mediated immunomodulatory and tumorigenic processes.


2020 ◽  
Author(s):  
Haohan Zhuang ◽  
Chaoqun Yao ◽  
Xianfeng Zhao ◽  
Yi Yang ◽  
Xueqiu Chen ◽  
...  

Abstract Background: Toxoplasma gondii (T. gondii) is an obligate parasite of the warm-blooded animals with a worldwide distribution. Once having entered a host cell, it manipulates host’s DNA damage response that is yet to be investigated. The objectives of the present study were three-fold: 1) to assess DNA damages in T. gondii-infected cells in vitro; 2) to ascertain sources causing DNA damage in T. gondii-infected cells; 3) to investigate activation of DNA damage response during T. gondii infection.Methods: HeLa, Vero and HEK293 cells were infected with T. gondii at multiplicity of infection (MOI) of 10:1. Infected cells at 10 h, 20 h or 30 h post infection were analyzed for a DNA double strand breaks (DSBs) biomarker γH2AX using Western blot and immunofluorescence assay. Reactive oxygen species (ROS) levels were examined using 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), and the impact of ROS on DNA damage was assessed by inhibition using a ROS inhibitor N-acetylcysteine (NAC). Lastly, DNA damage response in these T. gondii-infected cells was evaluated by detecting the expression of active form of ataxia telangiectasia mutated/checkpoint kinase 2 (ATM/CHK2) with Western blot. Results: Compared to uninfected cells, γH2AX expression in the infected HeLa cells at 10 h, 20 h, and 30 h was increased over time during T. gondii infection. NAC treatment reduced ROS level in host cells and significantly decreased the expression of γH2AX. Expression of phosphorylated ATM/CHK2 was elevated in T. gondii-infected cells.Conclusion: T. gondii infection triggered DNA DSBs with ROS as a major player in host cells in vitro. It also concomitantly activated DNA damage response pathway ATM/CHK2. T. gondii struggles a balance between survival and apoptosis of its host cells for the benefit of its own survival.


Author(s):  
Wilson McKerrow ◽  
Xuya Wang ◽  
Paolo Mita ◽  
Song Cao ◽  
Mark Grivainis ◽  
...  

ABSTRACTRetrotransposons are genomic DNA sequences that are capable of copying themselves to new genomic locations via RNA intermediates; LINE-1 is the only retrotransposon that remains autonomous and active in the human genome. The mobility of LINE-1 is largely repressed in somatic tissues, but LINE-1 is active in many cancers. Recent studies using LINE-1 constructs indicate that host cells activate a DNA damage response (DDR) to repair retrotransposition intermediates and resolve conflicts between LINE-1 and DNA replication. Using multi-omic data from the CPTAC project, we found correlations between LINE-1 expression and ATM-MRN-SMC DDR signalling in endometrial cancer and between LINE-1 and the ATR-CHEK1 pathway in p53 wild type breast cancer. This provides evidence that conflicts between LINE-1 and DNA replication occur in at least some human cancers. Furthermore, LINE-1 expression in these cancers is correlated with the total amount of copy number variation genome wide, indicating that, when active in cancer, pointing to a direct impact of LINE-1 associated DNA damage on genome structure. We also find that, in endometrial and ovarian cancer, LINE-1 expression is correlated with the expression of genes that drive cycle progression including E2F3, PLK1 and Aurora kinase B. This study provides evidence, supporting recent work in model cell lines, of a LINE-1/DDR connection in human tumors and raises the possibility of additional interactions between LINE-1 and the cell cycle.


Sign in / Sign up

Export Citation Format

Share Document