scholarly journals Suppressive Effects of Hainosan (Painongsan) against Biofilm Production by Streptococcus mutans

2020 ◽  
Vol 8 (3) ◽  
pp. 71
Author(s):  
Masaaki Minami ◽  
Hiroshi Takase ◽  
Masayo Taira ◽  
Toshiaki Makino

Streptococcus mutans, a bacterium that causes dental plaques, forms a biofilm on tooth surfaces. This biofilm can cause gingivitis by stimulating the gingival margin. However, there is no established treatment for biofilm removal. Hainosan (Painongsan), a traditional Japanese Kampo formula, has been used to treat gingivitis. Therefore, we investigated the biofilm suppressive effects of the hainosan extract (HNS) and its components on S. mutans. We conducted scanning electron microscopy and confocal laser microscopy analyses to clarify the anti-biofilm activities of HNS and its crude drugs. We also performed a quantitative RT-PCR assay to assess the biofilm-related gene expression. HNS showed a significant dose-dependent suppressive effect on biofilm formation. Both the scanning electron microscopy and confocal laser microscopy analyses also revealed the significant inhibitory effects of the extract on biofilm formation. Transmission electron microscopy analysis showed that HNS disrupted the surface of the bacterial wall. Furthermore, HNS reduced the hydrophobicity of the bacteria, and suppressed the mRNA expression of β-glucosyltransferase (gtfB), glucosyltransferase-SI (gtfC), and fructosyltransferase (ftf). Among the constituents of hainosan, the extract of the root of Platycodon grandiflorum (PG) showed the strongest biofilm suppression effect. Platycodin D, one of the constituent natural compounds of PG, inhibited S. mutans-associated biofilm. These findings indicate that hainosan eliminates dental plaques by suppressing biofilm formation by S. mutans.

F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 1923
Author(s):  
Siska Septiana ◽  
Boy Muchlis Bachtiar ◽  
Nancy Dewi Yuliana ◽  
Christofora Hanny Wijaya

Background: Cajuputs candy (CC), an Indonesian functional food, utilizes the bioactivity of Melaleuca cajuputi essential oil (MCEO) to maintain oral cavity health. Synergistic interaction between Candida albicans and Streptococcus mutans is a crucial step in the pathogenesis of early childhood caries. Our recent study revealed several alternative MCEOs as the main flavors in CC. The capacity of CC to interfere with the fungus-bacterium relationship remains unknown. This study aimed to evaluate CC efficacy to impair biofilm formation by these dual cariogenic microbes. Methods: The inhibition capacity of CC against mixed-biofilm comprising C. albicans and S. mutans was assessed by quantitative (crystal violet assay, tetrazolium salt [MTT] assay, colony forming unit/mL counting, biofilm-related gene expression) and qualitative analysis (light microscopy and scanning electron microscopy). Result: Both biofilm-biomass and viable cells were significantly reduced in the presence of CC. Scanning electron microscopy imaging confirmed this inhibition capacity, demonstrating morphology alteration of C. albicans, along with reduced microcolonies of S. mutans in the biofilm mass. This finding was related to the transcription level of selected biofilm-associated genes, expressed either by C. albicans or S. mutans. Based on qPCR results, CC could interfere with the transition of C. albicans yeast form to the hyphal form, while it suppressed insoluble glucan production by S. mutans. G2 derived from Mojokerto MCEO showed the greatest inhibition activity on the relationship between these cross-kingdom oral microorganisms (p < 0.05). Conclusion: In general, all CC formulas showed biofilm inhibition capacity. Candy derived from Mojokerto MCEO showed the greatest capacity to maintain the yeast form of C. albicans and to inhibit extracellular polysaccharide production by S. mutans. Therefore, the development of dual-species biofilms can be impaired effectively by the CC tested.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1923 ◽  
Author(s):  
Siska Septiana ◽  
Boy Muchlis Bachtiar ◽  
Nancy Dewi Yuliana ◽  
Christofora Hanny Wijaya

Background: Cajuputs candy (CC), an Indonesian functional food, utilizes the bioactivity of Melaleuca cajuputi essential oil (MCEO) to maintain oral cavity health. Synergistic interaction between Candida albicans and Streptococcus mutans is a crucial step in the pathogenesis of early childhood caries. Our recent study revealed several alternative MCEOs as the main flavors in CC. The capacity of CC to interfere with the fungus-bacterium relationship remains unknown. This study aimed to evaluate CC efficacy to impair biofilm formation by these dual cariogenic microbes. Methods: The inhibition capacity of CC against mixed-biofilm comprising C. albicans and S. mutans was assessed by quantitative (crystal violet assay, tetrazolium salt [MTT] assay, colony forming unit/mL counting, biofilm-related gene expression) and qualitative analysis (light microscopy and scanning electron microscopy). Result: Both biofilm-biomass and viable cells were significantly reduced in the presence of CC. Scanning electron microscopy imaging confirmed this inhibition capacity, demonstrating morphology alteration of C. albicans, along with reduced microcolonies of S. mutans in the biofilm mass. This finding was related to the transcription level of selected biofilm-associated genes, expressed either by C. albicans or S. mutans. Based on qPCR results, CC could interfere with the transition of C. albicans yeast form to the hyphal form, while it suppressed insoluble glucan production by S. mutans. G2 derived from Mojokerto MCEO showed the greatest inhibition activity on the relationship between these cross-kingdom oral microorganisms (p < 0.05). Conclusion: In general, all CC formulas showed biofilm inhibition capacity. Candy derived from Mojokerto MCEO showed the greatest capacity to maintain the commensal form of C. albicans and to inhibit extracellular polysaccharide production by S. mutans. Therefore, the development of dual-species biofilms can be impaired effectively by the CC tested.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Thaise C. Geremias ◽  
Juan F. D. Montero ◽  
Ricardo de Souza Magini ◽  
Guenther Schuldt Filho ◽  
Edival Barreto de Magalhães ◽  
...  

The aim of the current study was to analyse the planktonic growth of Streptococcus mutans on the surfaces of three implants retrieved after three different peri-implantitis treatments. Three implants from a male patient with high levels of bone loss were treated by mechanical debridement, chemical decontamination, and implantoplasty. After 4 months of follow-up, the implants were removed. The growth and biofilm formation were measured by spectrophotometry (OD630 nm) and scanning electron microscopy (SEM), after 48 hours of incubation. Results showed an average of Streptococcus mutans planktonic growth over the implants of 0.21 nm (mechanical debridement), 0.16 nm (chemical decontamination), and 0.15 nm (implantoplasty). Data were analysed by ANOVA and Tukey’s test (p<0.05 for chemical decontamination and implantoplasty). Implantoplasty and chemical decontamination showed the lowest levels of planktonic growth, indicating a possible influence of the modification procedures on the titanium surface on the initial biofilm attachment.


2020 ◽  
Vol 20 (24) ◽  
pp. 2186-2191
Author(s):  
Lialyz Soares Pereira André ◽  
Renata Freire Alves Pereira ◽  
Felipe Ramos Pinheiro ◽  
Aislan Cristina Rheder Fagundes Pascoal ◽  
Vitor Francisco Ferreira ◽  
...  

Background: Resistance to antimicrobial agents is a major public health problem, being Staphylococcus aureus prevalent in infections in hospital and community environments and, admittedly, related to biofilm formation in biotic and abiotic surfaces. Biofilms form a complex and structured community of microorganisms surrounded by an extracellular matrix adhering to each other and to a surface that gives them even more protection from and resistance against the action of antimicrobial agents, as well as against host defenses. Methods: Aiming to control and solve these problems, our study sought to evaluate the action of 1,2,3- triazoles against a Staphylococcus aureus isolate in planktonic and in the biofilm form, evaluating the activity of this triazole through Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) tests. We have also performed cytotoxic evaluation and Scanning Electron Microscopy (SEM) of the biofilms under the treatment of the compound. The 1,2,3-triazole DAN 49 showed bacteriostatic and bactericidal activity (MIC and MBC 128 μg/mL). In addition, its presence interfered with the biofilm formation stage (1/2 MIC, p <0.000001) and demonstrated an effect on young preformed biofilm (2 MICs, p <0.05). Results: Scanning Electron Microscopy images showed a reduction in the cell population and the appearance of deformations on the surface of some bacteria in the biofilm under treatment with the compound. Conclusion: Therefore, it was possible to conclude the promising anti-biofilm potential of 1,2,3-triazole, demonstrating the importance of the synthesis of new compounds with biological activity.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 464
Author(s):  
Simona Liliana Iconaru ◽  
Mihai Valentin Predoi ◽  
Patrick Chapon ◽  
Sofia Gaiaschi ◽  
Krzysztof Rokosz ◽  
...  

In this study, the cerium-doped hydroxyapatite (Ca10−xCex(PO4)6(OH)2 with xCe = 0.1, 10Ce-HAp) coatings obtained by the spin coating method were presented for the first time. The stability of the 10Ce-HAp suspension particles used in the preparation of coatings was evaluated by ultrasonic studies, transmission electron microscopy (TEM), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The surface morphology of the 10Ce-HAp coating was studied by SEM and atomic force microscopy (AFM) techniques. The obtained 10Ce-HAp coatings were uniform and without cracks or unevenness. Glow discharge optical emission spectroscopy (GDOES) and X-ray photoelectron spectroscopy (XPS) were used for the investigation of fine chemical depth profiling. The antifungal properties of the HAp and 10Ce-HAp suspensions and coatings were assessed using Candida albicans ATCC 10231 (C. albicans) fungal strain. The quantitative antifungal assays demonstrated that both 10Ce-HAp suspensions and coatings exhibited strong antifungal properties and that they successfully inhibited the development and adherence of C. albicans fungal cells for all the tested time intervals. The scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) visualization of the C. albicans fungal cells adherence to the 10Ce-HAp surface also demonstrated their strong inhibitory effects. In addition, the qualitative assays also suggested that the 10Ce-HAp coatings successfully stopped the biofilm formation.


2019 ◽  
Vol 67 (10) ◽  
pp. 1708
Author(s):  
Dipankar Das ◽  
Harsha Bhattacharjee ◽  
Krishna Gogoi ◽  
JayantaK Das ◽  
Puneet Misra ◽  
...  

2019 ◽  
Vol 64 (5) ◽  
pp. 308-313 ◽  
Author(s):  
M. G. Chesnokova ◽  
V. A. Chesnokov ◽  
A. Yu. Mironov

The most common pathology in the clinic of orthopedic dentistry is the presence of partial adentia in patients, manifested in the form of defects of dentition of various localization and length. Removable orthopedic structures in the oral cavity are a potential place for adhesion and colonization of microorganisms. The aim of the research was to study Candida albicans biofilms on the surface of base plastics of removable orthopedic structures using scanning electron microscopy. 175 cultures of C. albicans were isolated and identified from the oral mucosa of patients at various stages of orthopedic rehabilitation. When studying the surface of samples of plastics of hot and cold type polymerization and Candida biofilms using a JEOL JCM 5700 scanning electron microscope (JEOL, Japan), features of biofilm formation were established. An assessment of the nature of the manifestation of the hemagglutinating activity of clinical strains of Candida fungi in the hemagglutination test with human erythrocytes I (O), II (A) of the human and guinea pig blood groups was carried out. The total number of hemagglutinating strains was 37.14%, with the prevalence of the proportion of manna-resistant (MRHA) cultures - 23.43% of cases. Micrographs of the C. albicans yeast-like biofilm biofilm were obtained on the surface of hot and cold-type plastics in incubation dynamics. Scanning electron microscopy revealed the most pronounced changes in the surface of hot plastics of polymerization compared to cold plastics with long incubation of C. albicans, which characterize the loosening of plastics and the appearance of cracks on the surface, and the cracking of a yeast-like fungus biofilm was noted.


Sign in / Sign up

Export Citation Format

Share Document