scholarly journals A Multiple Rényi Entropy Based Intrusion Detection System for Connected Vehicles

Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 186 ◽  
Author(s):  
Ki-Soon Yu ◽  
Sung-Hyun Kim ◽  
Dae-Woon Lim ◽  
Young-Sik Kim

In this paper, we propose an intrusion detection system based on the estimation of the Rényi entropy with multiple orders. The Rényi entropy is a generalized notion of entropy that includes the Shannon entropy and the min-entropy as special cases. In 2018, Kim proposed an efficient estimation method for the Rényi entropy with an arbitrary real order α . In this work, we utilize this method to construct a multiple order, Rényi entropy based intrusion detection system (IDS) for vehicular systems with various network connections. The proposed method estimates the Rényi entropies simultaneously with three distinct orders, two, three, and four, based on the controller area network (CAN)-IDs of consecutively generated frames. The collected frames are split into blocks with a fixed number of frames, and the entropies are evaluated based on these blocks. For a more accurate estimation against each type of attack, we also propose a retrospective sliding window method for decision of attacks based on the estimated entropies. For fair comparison, we utilized the CAN-ID attack data set generated by a research team from Korea University. Our results show that the proposed method can show the false negative and positive errors of less than 1% simultaneously.

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1765
Author(s):  
Francesco Pascale ◽  
Ennio Andrea Adinolfi ◽  
Simone Coppola ◽  
Emanuele Santonicola

Today’s modern vehicles are connected to a network and are considered smart objects of IoT, thanks to the capability to send and receive data from the network. One of the greatest challenges in the automotive sector is to make the vehicle secure and reliable. In fact, there are more connected instruments on a vehicle, such as the infotainment system and/or data interchange systems. Indeed, with the advent of new paradigms, such as Smart City and Smart Road, the vision of Internet of Things has evolved substantially. Today, we talk about the V2X systems in which the vehicle is strongly connected with the rest of the world. In this scenario, the main aim of all connected vehicles vendors is to provide a secure system to guarantee the safety of the drive and persons against a possible cyber-attack. So, in this paper, an embedded Intrusion Detection System (IDS) for the automotive sector is introduced. It works by adopting a two-step algorithm that provides detection of a possible cyber-attack. In the first step, the methodology provides a filter of all the messages on the Controller Area Network (CAN-Bus) thanks to the use of a spatial and temporal analysis; if a set of messages are possibly malicious, these are analyzed by a Bayesian network, which gives the probability that a given event can be classified as an attack. To evaluate the efficiency and effectiveness of our method, an experimental campaign was conducted to evaluate them, according to the classic evaluation parameters for a test’s accuracy. These results were compared with a common data set on cyber-attacks present in the literature. The first experimental results, obtained in a test scenario, seem to be interesting. The results show that our method has good correspondence in the presence of the most common cyber-attacks (DDoS, Fuzzy, Impersonating), obtaining a good score relative to the classic evaluation parameters for a test’s accuracy. These results have decreased performance when we test the system on a Free State Attack.


2021 ◽  
Author(s):  
Nasim Beigi Mohammadi

Smart grid is expected to improve the efficiency, reliability and economics of current energy systems. Using two-way flow of electricity and information, smart grid builds an automated, highly distributed energy delivery network. In this thesis, we present the requirements for intrusion detection systems in smart grid, neighborhood area network (NAN) in particular. We propose an intrusion detection system (IDS) that considers the constraints and requirements of the NAN. It captures the communication and computation overhead constraints as well as the lack of a central point to install the IDS. The IDS is distributed on some nodes which are powerful in terms of memory, computation and the degree of connectivity. Our IDS uses an analytical approach for detecting Wormhole attack. We simulate wireless mesh NANs in OPNET Modeler and for the first time, we integrate our analytical model in Maple from MapleSoft with our OPNET simulation model.


2020 ◽  
Author(s):  
Sriram Srinivasan ◽  
Shashank A ◽  
vinayakumar R ◽  
Soman KP

In the present era, cyberspace is growing tremendously and the intrusion detection system (IDS) plays a key role in it to ensure information security. The IDS, which works in network and host level, should be capable of identifying various malicious attacks. The job of network-based IDS is to differentiate between normal and malicious traffic data and raise an alert in case of an attack. Apart from the traditional signature and anomaly-based approaches, many researchers have employed various deep learning (DL) techniques for detecting intrusion as DL models are capable of extracting salient features automatically from the input data. The application of deep convolutional neural network (DCNN), which is utilized quite often for solving research problems in image processing and vision fields, is not explored much for IDS. In this paper, a DCNN architecture for IDS which is trained on KDDCUP 99 data set is proposed. This work also shows that the DCNN-IDS model performs superior when compared with other existing works.


Author(s):  
Soukaena Hassan Hashem

This chapter aims to build a proposed Wire/Wireless Network Intrusion Detection System (WWNIDS) to detect intrusions and consider many of modern attacks which are not taken in account previously. The proposal WWNIDS treat intrusion detection with just intrinsic features but not all of them. The dataset of WWNIDS will consist of two parts; first part will be wire network dataset which has been constructed from KDD'99 that has 41 features with some modifications to produce the proposed dataset that called modern KDD and to be reliable in detecting intrusion by suggesting three additional features. The second part will be building wireless network dataset by collecting thousands of sessions (normal and intrusion); this proposed dataset is called Constructed Wireless Data Set (CWDS). The preprocessing process will be done on the two datasets (KDD & CWDS) to eliminate some problems that affect the detection of intrusion such as noise, missing values and duplication.


2013 ◽  
Vol 824 ◽  
pp. 200-205 ◽  
Author(s):  
Susan Konyeha ◽  
Emmanuel A. Onibere

Computers are involved in every aspect of modern society and have become an essential part of our lives, but their vulnerability is of increasing concern to us. Security flaws are inherent in the operation of computers Most flaws are caused by errors in the process of software engineering or unforeseen mishaps and it is difficult to solve these problems by conventional methods. A radical way of constantly monitoring the system for newly disclosed vulnerabilities is required. In order to devise such a system, this work draws an analogy between computer immune systems and the human immune system. The computer immune system is the equivalent of the human immune system. The primary objective of this paper is to use an intrusion detection system in the design and implementation of a computer immune system that would be built on the framework of the human immune system. This objective is successfully realized and in addition a prevention mechanism using the windows IP Firewall feature has been incorporated. Hence the system is able to perform intrusion detection and prevention. Data was collected about events occurring in a computer network that violate predefined security policy, such as attempts to affect the confidentiality, integrity or its availability using Snort rules for known attacks and adaptive detection for the unknown attacks. The system was tested using real-time data and Intrusion Detection evaluation (IDEVAL) Department of Defense Advanced Research Projects Agency (DARPA) data set. The results were quite encouraging as few false positive were recorded.


Sign in / Sign up

Export Citation Format

Share Document