scholarly journals Coupled Feedback Loops Involving PAGE4, EMT and Notch Signaling Can Give Rise to Non-genetic Heterogeneity in Prostate Cancer Cells

Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 288
Author(s):  
Divyoj Singh ◽  
Federico Bocci ◽  
Prakash Kulkarni ◽  
Mohit Kumar Jolly

Non-genetic heterogeneity is emerging as a crucial factor underlying therapy resistance in multiple cancers. However, the design principles of regulatory networks underlying non-genetic heterogeneity in cancer remain poorly understood. Here, we investigate the coupled dynamics of feedback loops involving (a) oscillations in androgen receptor (AR) signaling mediated through an intrinsically disordered protein PAGE4, (b) multistability in epithelial–mesenchymal transition (EMT), and c) Notch–Delta–Jagged signaling mediated cell-cell communication, each of which can generate non-genetic heterogeneity through multistability and/or oscillations. Our results show how different coupling strengths between AR and EMT signaling can lead to monostability, bistability, or oscillations in the levels of AR, as well as propagation of oscillations to EMT dynamics. These results reveal the emergent dynamics of coupled oscillatory and multi-stable systems and unravel mechanisms by which non-genetic heterogeneity in AR levels can be generated, which can act as a barrier to most existing therapies for prostate cancer patients.

2020 ◽  
Author(s):  
Divyoj Singh ◽  
Federico Bocci ◽  
Prakash Kulkarni ◽  
Mohit Kumar Jolly

AbstractNon-genetic heterogeneity is emerging to be a crucial factor underlying therapy resistance in multiple cancers. However, the design principles of regulatory networks underlying non-genetic heterogeneity in cancer remain poorly understood. Here, we investigate the coupled dynamics of feedback loops involving a) oscillations in androgen receptor (AR) signaling mediated through an intrinsically disordered protein PAGE4, b) multistability in epithelial-mesenchymal transition (EMT), and c) Notch-Delta-Jagged signaling mediated cell-cell communication, each of which can generate non-genetic heterogeneity through multistability and/or oscillations. Our results show how different coupling strengths between AR and EMT signaling can lead to possible bistability in the levels of AR. These results reveal the emergent dynamics of coupled oscillatory and multi-stable systems and unravel mechanisms by which non-genetic heterogeneity in AR levels can be generated, which can act as a barrier to most existing therapies for prostate cancer patients.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2795
Author(s):  
Sofia Papanikolaou ◽  
Aikaterini Vourda ◽  
Spyros Syggelos ◽  
Kostis Gyftopoulos

Prostate cancer, the second most common malignancy in men, is characterized by high heterogeneity that poses several therapeutic challenges. Epithelial–mesenchymal transition (EMT) is a dynamic, reversible cellular process which is essential in normal embryonic morphogenesis and wound healing. However, the cellular changes that are induced by EMT suggest that it may also play a central role in tumor progression, invasion, metastasis, and resistance to current therapeutic options. These changes include enhanced motility and loss of cell–cell adhesion that form a more aggressive cellular phenotype. Moreover, the reverse process (MET) is a necessary element of the metastatic tumor process. It is highly probable that this cell plasticity reflects a hybrid state between epithelial and mesenchymal status. In this review, we describe the underlying key mechanisms of the EMT-induced phenotype modulation that contribute to prostate tumor aggressiveness and cancer therapy resistance, in an effort to provide a framework of this complex cellular process.


2021 ◽  
Author(s):  
Ielizaveta Gorodetska ◽  
Anna Offermann ◽  
Jakob Pueschel ◽  
Vasyl Lukiyanchuk ◽  
Diana Gaete ◽  
...  

Cancer stem cells (CSC) are characterized by high self-renewal capacity, tumor-initiating potential, and therapy resistance. Aldehyde dehydrogenase (ALDH)+ cell population serves as an indicator of prostate CSCs with increased therapy resistance, enhanced DNA double-strand break repair, and activated epithelial-mesenchymal transition (EMT) and migration. Numerous ALDH genes contribute to ALDH enzymatic activity; however, only some of them showed clinical relevance. We found that ALDH1A1 and ALDH1A3 genes functionally regulate CSC properties and radiation sensitivity of PCa. We revealed a negative correlation between ALDH1A1 and ALDH1A3 expression in publicly available prostate cancer (PCa) datasets and demonstrated that ALDH1A1 and ALDH1A3 have opposing predictive value for biochemical recurrence-free survival. Our data suggest an association of ALDH1A1 with the metastatic burden, elucidating the role of ALDH genes in the metastatic spread and homing to the bone, which can be, at least partially, attributed to regulating the transforming growth factor beta 1 (TGFB1) and matrix metalloproteinases (MMPs). ALDH genes play a diverse role in PCa development under AR and β-catenin-dependent regulation, with ALDH1A1 becoming dominant in later stages of tumor development when PCa cells gain androgen independence. Taken together, our results indicate that ALDH1A1 and ALDH1A3 modulate PCa radiosensitivity, regulate CSCs phenotype, and spread of PCa cells to the bone, therefore having clinical implication for identifying patients at high risk for progression to metastatic disease.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Benjamin Nordick ◽  
Tian Hong

Abstract Background Feedback loops in gene regulatory networks play pivotal roles in governing functional dynamics of cells. Systems approaches demonstrated characteristic dynamical features, including multistability and oscillation, of positive and negative feedback loops. Recent experiments and theories have implicated highly interconnected feedback loops (high-feedback loops) in additional nonintuitive functions, such as controlling cell differentiation rate and multistep cell lineage progression. However, it remains challenging to identify and visualize high-feedback loops in complex gene regulatory networks due to the myriad of ways in which the loops can be combined. Furthermore, it is unclear whether the high-feedback loop structures with these potential functions are widespread in biological systems. Finally, it remains challenging to understand diverse dynamical features, such as high-order multistability and oscillation, generated by individual networks containing high-feedback loops. To address these problems, we developed HiLoop, a toolkit that enables discovery, visualization, and analysis of several types of high-feedback loops in large biological networks. Results HiLoop not only extracts high-feedback structures and visualize them in intuitive ways, but also quantifies the enrichment of overrepresented structures. Through random parameterization of mathematical models derived from target networks, HiLoop presents characteristic features of the underlying systems, including complex multistability and oscillations, in a unifying framework. Using HiLoop, we were able to analyze realistic gene regulatory networks containing dozens to hundreds of genes, and to identify many small high-feedback systems. We found more than a 100 human transcription factors involved in high-feedback loops that were not studied previously. In addition, HiLoop enabled the discovery of an enrichment of high feedback in pathways related to epithelial-mesenchymal transition. Conclusions HiLoop makes the study of complex networks accessible without significant computational demands. It can serve as a hypothesis generator through identification and modeling of high-feedback subnetworks, or as a quantification method for motif enrichment analysis. As an example of discovery, we found that multistep cell lineage progression may be driven by either specific instances of high-feedback loops with sparse appearances, or generally enriched topologies in gene regulatory networks. We expect HiLoop’s usefulness to increase as experimental data of regulatory networks accumulate. Code is freely available for use or extension at https://github.com/BenNordick/HiLoop.


2019 ◽  
Vol 5 (11) ◽  
pp. eaav9810 ◽  
Author(s):  
Min Young Kim ◽  
Insung Na ◽  
Ji Sook Kim ◽  
Seung Han Son ◽  
Sungwoo Choi ◽  
...  

Although intrinsically disordered protein regions (IDPRs) are commonly engaged in promiscuous protein-protein interactions (PPIs), using them as drug targets is challenging due to their extreme structural flexibility. We report a rational discovery of inhibitors targeting an IDPR of MBD2 that undergoes disorder-to-order transition upon PPI and is critical for the regulation of the Mi-2/NuRD chromatin remodeling complex (CRC). Computational biology was essential for identifying target site, searching for promising leads, and assessing their binding feasibility and off-target probability. Molecular action of selected leads inhibiting the targeted PPI of MBD2 was validated in vitro and in cell, followed by confirming their inhibitory effects on the epithelial-mesenchymal transition of various cancer cells. Identified lead compounds appeared to potently inhibit cancer metastasis in a murine xenograft tumor model. These results constitute a pioneering example of rationally discovered IDPR-targeting agents and suggest Mi-2/NuRD CRC and/or MBD2 as a promising target for treating cancer metastasis.


Author(s):  
Ayalur Raghu Subbalakshmi ◽  
Deepali Kundnani ◽  
Kuheli Biswas ◽  
Anandamohan Ghosh ◽  
Samir M Hanash ◽  
...  

AbstractMetastasis remains the cause of over 90% of cancer-related deaths. Cells undergoing metastasis use phenotypic plasticity to adapt to their changing environmental conditions and avoid therapy and immune response. Reversible transitions between epithelial and mesenchymal phenotypes - Epithelial-Mesenchymal Transition (EMT) and its reverse Mesenchymal-Epithelial Transition (MET) - form a key axis of phenotypic plasticity during metastasis and therapy resistance. Recent studies have shown that the cells undergoing EMT/MET can attain one or more hybrid epithelial/mesenchymal (E/M) phenotypes, the process of which is termed as partial EMT/MET. Cells in hybrid E/M phenotype(s) can be more aggressive than those in either epithelial or mesenchymal state. Thus, it is crucial to identify the factors and regulatory networks enabling such hybrid E/M phenotypes. Here, employing an integrated computational-experimental approach, we show that the transcription factor NFATc can inhibit the process of complete EMT, thus stabilizing the hybrid E/M phenotype. It increases the range of parameters enabling the existence of a hybrid E/M phenotype, thus behaving as a phenotypic stability factor (PSF). However, unlike previously identified PSFs, it does not increase the mean residence time of the cells in hybrid E/M phenotypes, as shown by stochastic simulations; rather it enables the co-existence of epithelial, mesenchymal and hybrid E/M phenotypes and transitions among them. Clinical data suggests the effect of NFATc on patient survival in a tissue-specific or context-dependent manner. Together, our results indicate that NFATc behaves as a non-canonical phenotypic stability factor for a hybrid E/M phenotype.


2018 ◽  
Vol 8 (1) ◽  
pp. 62 ◽  
Author(s):  
Julianna Maria Santos ◽  
Fazle Hussain

Background: Reduced levels of magnesium can cause several diseases and increase cancer risk. Motivated by magnesium chloride’s (MgCl2) non-toxicity, physiological importance, and beneficial clinical applications, we studied its action mechanism and possible mechanical, molecular, and physiological effects in prostate cancer with different metastatic potentials.Methods: We examined the effects of MgCl2, after 24 and 48 hours, on apoptosis, cell migration, expression of epithelial mesenchymal transition (EMT) markers, and V-H+-ATPase, myosin II (NMII) and the transcription factor NF Kappa B (NFkB) expressions.Results: MgCl2 induces apoptosis, and significantly decreases migration speed in cancer cells with different metastatic potentials.  MgCl2 reduces the expression of V-H+-ATPase and myosin II that facilitates invasion and metastasis, suppresses the expression of vimentin and increases expression of E-cadherin, suggesting a role of MgCl2 in reversing the EMT. MgCl2 also significantly increases the chromatin condensation and decreases NFkB expression.Conclusions: These results suggest a promising preventive and therapeutic role of MgCl2 for prostate cancer. Further studies should explore extending MgCl2 therapy to in vivo studies and other cancer types.Keywords: Magnesium chloride, prostate cancer, migration speed, V-H+-ATPase, and EMT.


Author(s):  
Mirazkar D. Pandareesh ◽  
Vivek Hamse Kameshwar ◽  
Kullaiah K. Byrappa

: Prostate cancer is a multifactorial disease that mainly occurs due to the accumulation of somatic, genetic and epigenetic changes, resulting in the inactivation of tumor-suppressor genes and activation of oncogenes. Mutations in genes, specifically those that control cell growth and division or the repair of damaged DNA, make the cells grow and divide uncontrollably to form a tumor. The risk of developing prostate cancer depends upon the gene that has undergone the mutation. Identifying such genetic risk factors for prostate cancer pose a challenge for the researchers. Besides genetic mutations, many epigenetic alterations including DNA methylation, histone modifications (methylation, acetylation, ubiquitylation, sumoylation, and phosphorylation) nucleosomal remodelling, and chromosomal looping, have been significantly contributed to the onset of prostate cancer as well as the prognosis, diagnosis, and treatment of prostate cancer. Chronic inflammation also plays a major role in the onset and progression of human cancer, via. modifications in the tumor microenvironment by initiating epithelial-mesenchymal transition and remodelling the extracellular matrix. In this article, the authors present a brief history of the mechanisms and potential links between the genetic aberrations, epigenetic changes, inflammation and inflammasomes that are known to contribute to the prognosis of prostate cancer. Furthermore, the authors examine and discuss clinical potential of prostate carcinogenesis in relation to epigenetics and inflammation for its diagnosis and treatment.


Oncogene ◽  
2021 ◽  
Author(s):  
Kaisa-Mari Launonen ◽  
Ville Paakinaho ◽  
Gianluca Sigismondo ◽  
Marjo Malinen ◽  
Reijo Sironen ◽  
...  

AbstractTreatment of prostate cancer confronts resistance to androgen receptor (AR)-targeted therapies. AR-associated coregulators and chromatin proteins hold a great potential for novel therapy targets. Here, we employed a powerful chromatin-directed proteomics approach termed ChIP-SICAP to uncover the composition of chromatin protein network, the chromatome, around endogenous AR in castration resistant prostate cancer (CRPC) cells. In addition to several expected AR coregulators, the chromatome contained many nuclear proteins not previously associated with the AR. In the context of androgen signaling in CRPC cells, we further investigated the role of a known AR-associated protein, a chromatin remodeler SMARCA4 and that of SIM2, a transcription factor without a previous association with AR. To understand their role in chromatin accessibility and AR target gene expression, we integrated data from ChIP-seq, RNA-seq, ATAC-seq and functional experiments. Despite the wide co-occurrence of SMARCA4 and AR on chromatin, depletion of SMARCA4 influenced chromatin accessibility and expression of a restricted set of AR target genes, especially those involved in cell morphogenetic changes in epithelial-mesenchymal transition. The depletion also inhibited the CRPC cell growth, validating SMARCA4’s functional role in CRPC cells. Although silencing of SIM2 reduced chromatin accessibility similarly, it affected the expression of a much larger group of androgen-regulated genes, including those involved in cellular responses to external stimuli and steroid hormone stimulus. The silencing also reduced proliferation of CRPC cells and tumor size in chick embryo chorioallantoic membrane assay, further emphasizing the importance of SIM2 in CRPC cells and pointing to the functional relevance of this potential prostate cancer biomarker in CRPC cells. Overall, the chromatome of AR identified in this work is an important resource for the field focusing on this important drug target.


Sign in / Sign up

Export Citation Format

Share Document