scholarly journals Knowledge Discovery from Medical Data and Development of an Expert System in Immunology

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 695
Author(s):  
Małgorzata Pac ◽  
Irina Mikutskaya ◽  
Jan Mulawka

Artificial intelligence is one of the fastest-developing areas of science that covers a remarkably wide range of problems to be solved. It has found practical application in many areas of human activity, also in medicine. One of the directions of cooperation between computer science and medicine is to assist in diagnosing and proposing treatment methods with the use of IT tools. This study is the result of collaboration with the Children’s Memorial Health Institute in Warsaw, from where a database containing information about patients suffering from Bruton’s disease was made available. This is a rare disorder, difficult to detect in the first months of life. It is estimated that one in 70,000 to 90,000 children will develop Bruton’s disease. But even these few cases need detailed attention from doctors. Based on the data contained in the database, data mining was performed. During this process, knowledge was discovered that was presented in a way that is understandable to the user, in the form of decision trees. The best models obtained were used for the implementation of expert systems. Based on the data introduced by the user, the system conducts expertise and determines the severity of the course of the disease or the severity of the mutation. The CLIPS language was used for developing the expert system. Then, using this language, software was developed producing six expert systems. In the next step, experimental verification was performed, which confirmed the correctness of the developed systems.

2002 ◽  
Vol 01 (04) ◽  
pp. 657-672 ◽  
Author(s):  
BASILIS BOUTSINAS

Data mining is an emerging research area that develops techniques for knowledge discovery in huge volumes of data. Usually, data mining rules can be used either to classify data into predefined classes, or to partition a set of patterns into disjoint and homogeneous clusters, or to reveal frequent dependencies among data. The discovery of data mining rules would not be very useful unless there are mechanisms to help analysts access them in a meaningful way. Actually, documenting and reporting the extracted knowledge is of considerable importance for the successful application of data mining in practice. In this paper, we propose a methodology for accessing data mining rules, which is based on using an expert system. We present how the different types of data mining rules can be transformed into the domain knowledge of any general-purpose expert system. Then, we present how certain attribute values given by the user as facts and/or goals can determine, through a forward and/or backward chaining, the related data mining rules. In this paper, we also present a case study that demonstrates the applicability of the proposed methodology.


Author(s):  
Siti Nurhena ◽  
Nelly Astuti Hasibuan ◽  
Kurnia Ulfa

The diagnosis process is the first step to knowing a type of disease. This type of disease caused by mosquitoes is one of the major viruses (MAVY), dengue hemorrhagic fever (DHF) and malaria. Sometimes not everyone can find the virus that is carried by this mosquito, usually children who are susceptible to this virus because the immune system that has not been built perfectly is perfect. To know for sure which virus is infected by mosquitoes, it can diagnose by seeing symptoms perceived symptoms. Expert systems are one of the most used artificial intelligence techniques today because expert systems can act as consultations. In this case the authors make a system to start a diagnosis process with variable centered intelligent rule system (VCIRS) methods through perceived symptoms. With the facilities provided for users and administrators, allowing both users and administrators to use this system according to their individual needs. This expert system is made with the Microsoft Visual Basic 2008 programming language.Keywords: Expert System, Mayora Virus, Variable Centered Intelligent Rule System (VCIRS)The diagnosis process is the first step to knowing a type of disease. This type of disease caused by mosquitoes is one of the major viruses (MAVY), dengue hemorrhagic fever (DHF) and malaria. Sometimes not everyone can find the virus that is carried by this mosquito, usually children who are susceptible to this virus because the immune system that has not been built perfectly is perfect. To know for sure which virus is infected by mosquitoes, it can diagnose by seeing symptoms perceived symptoms.Expert systems are one of the most used artificial intelligence techniques today because expert systems can act as consultations. In this case the authors make a system to start a diagnosis process with variable centered intelligent rule system (VCIRS) methods through perceived symptoms.With the facilities provided for users and administrators, allowing both users and administrators to use this system according to their individual needs. This expert system is made with the Microsoft Visual Basic 2008 programming language.Keywords: Expert System, Mayora Virus, Variable Centered Intelligent Rule System (VCIRS)


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Amit K. Sinha 1 ◽  
Andrew J. Jacob 2

Expert systems, a type of artificial intelligence that replicate how experts think, can aide unskilled users in making decisions or apply an expert’s thought process to a sample much larger than could be examined by a human expert. In this paper, an expert system that ranks financial securities using fuzzy membership functions is developed and applied to form portfolios. Our results indicate that this approach to form stock portfolios can result in superior returns than the market as measured by the return on the S&P 500. These portfolios may also provide superior risk-adjusted returns when compared to the market.


2021 ◽  
Author(s):  
Oleg Varlamov

Methodological and applied issues of the basics of creating knowledge bases and expert systems of logical artificial intelligence are considered. The software package "MIV Expert Systems Designer" (KESMI) Wi!Mi RAZUMATOR" (version 2.1), which is a convenient tool for the development of intelligent information systems. Examples of creating mivar expert systems and several laboratory works are given. The reader, having studied this tutorial, will be able to independently create expert systems based on KESMI. The textbook in the field of training "Computer Science and Computer Engineering" is intended for students, bachelors, undergraduates, postgraduates studying artificial intelligence methods used in information processing and management systems, as well as for users and specialists who create mivar knowledge models, expert systems, automated control systems and decision support systems. Keywords: cybernetics, artificial intelligence, mivar, mivar networks, databases, data models, expert system, intelligent systems, multidimensional open epistemological active network, MOGAN, MIPRA, KESMI, Wi!Mi, Razumator, knowledge bases, knowledge graphs, knowledge networks, Big knowledge, products, logical inference, decision support systems, decision-making systems, autonomous robots, recommendation systems, universal knowledge tools, expert system designers, logical artificial intelligence.


2021 ◽  
Author(s):  
Oleg Varlamov

The multidimensional open epistemological active network MOGAN is the basis for the transition to a qualitatively new level of creating logical artificial intelligence. Mivar databases and rules became the foundation for the creation of MOGAN. The results of the analysis and generalization of data representation structures of various data models are presented: from relational to "Entity — Relationship" (ER-model). On the basis of this generalization, a new model of data and rules is created: the mivar information space "Thing-Property-Relation". The logic-computational processing of data in this new model of data and rules is shown, which has linear computational complexity relative to the number of rules. MOGAN is a development of Rule - Based Systems and allows you to quickly and easily design algorithms and work with logical reasoning in the "If..., Then..." format. An example of creating a mivar expert system for solving problems in the model area "Geometry"is given. Mivar databases and rules can be used to model cause-and-effect relationships in different subject areas and to create knowledge bases of new-generation applied artificial intelligence systems and real-time mivar expert systems with the transition to"Big Knowledge". The textbook in the field of training "Computer Science and Computer Engineering" is intended for students, bachelors, undergraduates, postgraduates studying artificial intelligence methods used in information processing and management systems, as well as for users and specialists who create mivar knowledge models, expert systems, automated control systems and decision support systems. Keywords: cybernetics, artificial intelligence, mivar, mivar networks, databases, data models, expert system, intelligent systems, multidimensional open epistemological active network, MOGAN, MIPRA, KESMI, Wi!Mi, Razumator, knowledge bases, knowledge graphs, knowledge networks, Big knowledge, products, logical inference, decision support systems, decision-making systems, autonomous robots, recommendation systems, universal knowledge tools, expert system designers, logical artificial intelligence.


Author(s):  
Juan R. Rabuñal Dopico ◽  
Daniel Rivero Cebrian ◽  
Julián Dorado de la Calle ◽  
Nieves Pedreira Souto

The world of Data Mining (Cios, Pedrycz & Swiniarrski, 1998) is in constant expansion. New information is obtained from databases thanks to a wide range of techniques, which are all applicable to a determined set of domains and count with a series of advantages and inconveniences. The Artificial Neural Networks (ANNs) technique (Haykin, 1999; McCulloch & Pitts, 1943; Orchad, 1993) allows us to resolve complex problems in many disciplines (classification, clustering, regression, etc.), and presents a series of advantages that convert it into a very powerful technique that is easily adapted to any environment. The main inconvenience of ANNs, however, is that they can not explain what they learn and what reasoning was followed to obtain the outputs. This implies that they can not be used in many environments in which this reasoning is essential.


1993 ◽  
Vol 115 (1) ◽  
pp. 56-61
Author(s):  
P. J. Hartman

Expert systems are one of the few areas of artificial intelligence which have successfully made the transition from research and development to practical application. The key to fielding a successful expert system is finding the right problem to solve. AI costs, including all the development and testing, are so high that the problems must be very important to justify the effort. This paper develops a systematic way of trying to predict the future. It provides robust decision-making criteria, which can be used to predict the success or failure of proposed expert systems. The methods focus on eliminating obviously unsuitable problems and performing risk assessments and cost evaluations of the program. These assessments include evaluation of need, problem complexity, value, user experience, and the processing speed required. If an application proves feasible, the information generated during the decision phase can be then used to speed the development process.


2018 ◽  
Vol 2 (2) ◽  
pp. 530-535 ◽  
Author(s):  
Sella Marselena ◽  
Ause Labellapansa ◽  
Abdul Syukur

Many pets can be played with, socialize and even live together with humans. Numbers of animal clinics have increased to provide care for pets. This study focuses on Dog as pet. Desease and improper treatment of dog will adversely affect the Dog. In dealing with the problem of Dog disease, Dog owners may experience difficulties due to limited number of clinics and veterinarians, especially in rural areas. As a solution, Artificial Intelligence is used by using expert systems that can help inexperienced medical personnel diagnose early symptoms of Dog disease. The search method used in this research is Forward Chaining and Bayes Theorem method to handle uncertainties that arised. Based on knowledge acquisition, 3 diseases were obtained with 38 simptoms and 60 cases. Based on the tests conducted then obtained the sensitivity value of 80%, the value of accuracy of 88.6% indicates that this expert system is able to diagnose dog diseasesKeywords: Dog, Expert System, Forward Chaining, Bayes Theorem.  


2020 ◽  
Author(s):  
Aggarwal AJuhi ◽  
Shailesh Kumar

Artificial Intelligence (AI) is the branch of computer science concerned with the study and creation of computer of computer system are more intelligence than human. Artificial Intelligence programmed by the human beings. We can increase the AI’s capabilities by the supervised and unsupervised teaching. Artificial Intelligence works with pattern matching method which attempts to describe objects, events or process in terms of their qualitative features, logical and computational relationship. AI can also be used to make predications in future. Artificial Intelligence helps people to make their tasks easily and efficiently. Intelligence is the way of thinking and acting upon the environment, this might depend upon the the programming. There is huge difference on the Natural Intelligence (NI), Machine Intelligence (MI) and Artificial Intelligence. There is wide range of application for that ranges from computer vision to expert system.


Sign in / Sign up

Export Citation Format

Share Document