scholarly journals EEG-Based Emotion Recognition by Exploiting Fused Network Entropy Measures of Complex Networks across Subjects

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 984
Author(s):  
Longxin Yao ◽  
Mingjiang Wang ◽  
Yun Lu ◽  
Heng Li ◽  
Xue Zhang

It is well known that there may be significant individual differences in physiological signal patterns for emotional responses. Emotion recognition based on electroencephalogram (EEG) signals is still a challenging task in the context of developing an individual-independent recognition method. In our paper, from the perspective of spatial topology and temporal information of brain emotional patterns in an EEG, we exploit complex networks to characterize EEG signals to effectively extract EEG information for emotion recognition. First, we exploit visibility graphs to construct complex networks from EEG signals. Then, two kinds of network entropy measures (nodal degree entropy and clustering coefficient entropy) are calculated. By applying the AUC method, the effective features are input into the SVM classifier to perform emotion recognition across subjects. The experiment results showed that, for the EEG signals of 62 channels, the features of 18 channels selected by AUC were significant (p < 0.005). For the classification of positive and negative emotions, the average recognition rate was 87.26%; for the classification of positive, negative, and neutral emotions, the average recognition rate was 68.44%. Our method improves mean accuracy by an average of 2.28% compared with other existing methods. Our results fully demonstrate that a more accurate recognition of emotional EEG signals can be achieved relative to the available relevant studies, indicating that our method can provide more generalizability in practical use.

2022 ◽  
Vol 12 ◽  
Author(s):  
Mingxing Liu

This paper presents an in-depth study and analysis of the emotional classification of EEG neurofeedback interactive electronic music compositions using a multi-brain collaborative brain-computer interface (BCI). Based on previous research, this paper explores the design and performance of sound visualization in an interactive format from the perspective of visual performance design and the psychology of participating users with the help of knowledge from various disciplines such as psychology, acoustics, aesthetics, neurophysiology, and computer science. This paper proposes a specific mapping model for the conversion of sound to visual expression based on people’s perception and aesthetics of sound based on the phenomenon of audiovisual association, which provides a theoretical basis for the subsequent research. Based on the mapping transformation pattern between audio and visual, this paper investigates the realization path of interactive sound visualization, the visual expression form and its formal composition, and the aesthetic style, and forms a design expression method for the visualization of interactive sound, to benefit the practice of interactive sound visualization. In response to the problem of neglecting the real-time and dynamic nature of the brain in traditional brain network research, dynamic brain networks proposed for analyzing the EEG signals induced by long-time music appreciation. During prolonged music appreciation, the connectivity of the brain changes continuously. We used mutual information on different frequency bands of EEG signals to construct dynamic brain networks, observe changes in brain networks over time and use them for emotion recognition. We used the brain network for emotion classification and achieved an emotion recognition rate of 67.3% under four classifications, exceeding the highest recognition rate available.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Chenchen Huang ◽  
Wei Gong ◽  
Wenlong Fu ◽  
Dongyu Feng

Feature extraction is a very important part in speech emotion recognition, and in allusion to feature extraction in speech emotion recognition problems, this paper proposed a new method of feature extraction, using DBNs in DNN to extract emotional features in speech signal automatically. By training a 5 layers depth DBNs, to extract speech emotion feature and incorporate multiple consecutive frames to form a high dimensional feature. The features after training in DBNs were the input of nonlinear SVM classifier, and finally speech emotion recognition multiple classifier system was achieved. The speech emotion recognition rate of the system reached 86.5%, which was 7% higher than the original method.


2020 ◽  
Vol 49 (3) ◽  
pp. 285-298
Author(s):  
Jian Zhang ◽  
Yihou Min

Human Emotion Recognition is of vital importance to realize human-computer interaction (HCI), while multichannel electroencephalogram (EEG) signals gradually replace other physiological signals and become the main basis of emotional recognition research with the development of brain-computer interface (BCI). However, the accuracy of emotional classification based on EEG signals under video stimulation is not stable, which may be related to the characteristics of  EEG signals before receiving stimulation. In this study, we extract the change of Differential Entropy (DE) before and after stimulation based on wavelet packet transform (WPT) to identify individual emotional state. Using the EEG emotion database DEAP, we divide the experimental EEG data in the database equally into 15 sets and extract their differential entropy on the basis of WPT. Then we calculate value of DE change of each separated EEG signal set. Finally, we divide the emotion into four categories in the two-dimensional valence-arousal emotional space by combining it with the integrated algorithm, Random Forest (RF). The simulation results show that the WPT-RF model established by this method greatly improves the recognition rate of EEG signal, with an average classification accuracy of 87.3%. In addition, we use WPT-RF model to train individual subjects, and the classification accuracy reached 97.7%.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Kit Hwa Cheah ◽  
Humaira Nisar ◽  
Vooi Voon Yap ◽  
Chen-Yi Lee ◽  
G. R. Sinha

Emotion is a crucial aspect of human health, and emotion recognition systems serve important roles in the development of neurofeedback applications. Most of the emotion recognition methods proposed in previous research take predefined EEG features as input to the classification algorithms. This paper investigates the less studied method of using plain EEG signals as the classifier input, with the residual networks (ResNet) as the classifier of interest. ResNet having excelled in the automated hierarchical feature extraction in raw data domains with vast number of samples (e.g., image processing) is potentially promising in the future as the amount of publicly available EEG databases has been increasing. Architecture of the original ResNet designed for image processing is restructured for optimal performance on EEG signals. The arrangement of convolutional kernel dimension is demonstrated to largely affect the model’s performance on EEG signal processing. The study is conducted on the Shanghai Jiao Tong University Emotion EEG Dataset (SEED), with our proposed ResNet18 architecture achieving 93.42% accuracy on the 3-class emotion classification, compared to the original ResNet18 at 87.06% accuracy. Our proposed ResNet18 architecture has also achieved a model parameter reduction of 52.22% from the original ResNet18. We have also compared the importance of different subsets of EEG channels from a total of 62 channels for emotion recognition. The channels placed near the anterior pole of the temporal lobes appeared to be most emotionally relevant. This agrees with the location of emotion-processing brain structures like the insular cortex and amygdala.


2018 ◽  
Vol 7 (4.11) ◽  
pp. 29
Author(s):  
S. A. Samad ◽  
A. B. Huddin

A method to classify the genre of traditional Malay music using spectrogram correlation is described.  The method can be divided into three distinct parts consisting of spectrogram construction that retains the most salient feature of the music, template construction that takes into account the variations in music within a genre as well as the music progresses, and template matching based on spectrogram image cross-correlation with unconstrained minimum average correlation energy filters. Experiments conducted with seven genres of traditional Malay music show that the recognition accuracy is dependent on the number of segments used to construct the filter templates, which in turn is related to the length of music segment used. Despite using a small dataset, an average recognition rate of 61.8 percent was obtained for music segments lasting 180 seconds using six relatively short excerpts.  


2017 ◽  
Vol 27 (04) ◽  
pp. 1750005 ◽  
Author(s):  
Zhong-Ke Gao ◽  
Qing Cai ◽  
Yu-Xuan Yang ◽  
Na Dong ◽  
Shan-Shan Zhang

Detecting epileptic seizure from EEG signals constitutes a challenging problem of significant importance. Combining adaptive optimal kernel time-frequency representation and visibility graph, we develop a novel method for detecting epileptic seizure from EEG signals. We construct complex networks from EEG signals recorded from healthy subjects and epilepsy patients. Then we employ clustering coefficient, clustering coefficient entropy and average degree to characterize the topological structure of the networks generated from different brain states. In addition, we combine energy deviation and network measures to recognize healthy subjects and epilepsy patients, and further distinguish brain states during seizure free interval and epileptic seizures. Three different experiments are designed to evaluate the performance of our method. The results suggest that our method allows a high-accurate classification of epileptiform EEG signals.


Author(s):  
Nayan M. Kakoty ◽  
Mantoo Kaiborta ◽  
Shyamanta M. Hazarika

This paper presents classification of grasp types based on surface electromyographic signals. Classification is through radial basis function kernel support vector machine using sum of wavelet decomposition coefficients of the EMG signals. In a study involving six subjects, we achieved an average recognition rate of 86%. The electromyographic grasp recognition together with a 8-bit microcontroller has been employed to control a five<br />fingered robotic hand to emulate six grasp types used during 70% daily living activities.<br /><br />


2021 ◽  
Vol 36 (1) ◽  
pp. 727-732
Author(s):  
M. Mohanambal ◽  
Dr.P. Vishnu Vardhan

Aim: The study aims to extract features from EEG signals and classify emotion using Support Vector Machine (SVM) and Hidden Markov Model (HMM) classifier. Materials and methods: The study was conducted using the Support Vector Machine (SVM) and Hidden Markov Model (HMM) programs to analyze and compare the recognition of emotions classified under EEG signals. The results were computed using the MATLAB algorithm. For each group, ten samples were used to compare the efficiency of SVM and HMM classifiers. Result: The study’s performance exhibits the HMM classifier’s accuracy over the SVM classifier and the emotion detection from EEG signals computed. The mean value of the HMM classifier is 52.2, and the SVM classifier is 22.4. The accuracy rate of 35% with the data features is found in HMM classifier. Conclusion: This study shows a higher accuracy level of 35% for the HMM classifier when compared with the SVM classifier. In the detection of emotions using the EEG signal. This result shows that the HMM classifier has a higher significant value of P=.001 < P=.005 than the SVM classifier.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nian Peng ◽  
Xiaoyan Zhu ◽  
Yongshun Liu ◽  
Baofeng Nie ◽  
Ying Cui ◽  
...  

AbstractThe topological classification of geochemical elements is widely used as a reference for regional prospecting prediction. In this study, we analyze the topological correlation structures of 39 representative geochemical elements from the Nanling area of South China by implementing the complex networks theory. The topological correlation structures of geochemical elements have a high clustering coefficient (0.8120–0.8880), but the magnitude of the shortest path (1.2950–2.3600) is small. In combination with the analysis of complex networks characteristics, we report that the topological correlation structures of the geochemical elements in this area have small-world characteristics, which reveals the self-organized criticality. As shown in the topological network, two random elements have some level of associations, which present a specific community feature. Our preliminary result shows that with changing the control parameter (k) of “coarse-graining”, the topological correlation structures undergo two critical phase transitions. As the control parameter (k) reaches 0.44, the entire element system evolves into two parts. When the control parameter (k) reaches 0.63, the system forms three “communities”. It is worth noting that the three “communities” are basically consistent with the Goldschmidt’s geochemical classification of the elements, which are lithophile, siderophile, and chalcophile groups, respectively. In these “communities”, we also found that a small level of component units is nested.


Algorithms ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 145
Author(s):  
Hongquan Qu ◽  
Zhanli Fan ◽  
Shuqin Cao ◽  
Liping Pang ◽  
Hao Wang ◽  
...  

Electroencephalogram (EEG) signals contain a lot of human body performance information. With the development of the brain–computer interface (BCI) technology, many researchers have used the feature extraction and classification algorithms in various fields to study the feature extraction and classification of EEG signals. In this paper, the sensitive bands of EEG data under different mental workloads are studied. By selecting the characteristics of EEG signals, the bands with the highest sensitivity to mental loads are selected. In this paper, EEG signals are measured in different load flight experiments. First, the EEG signals are preprocessed by independent component analysis (ICA) to remove the interference of electrooculogram (EOG) signals, and then the power spectral density and energy are calculated for feature extraction. Finally, the feature importance is selected based on Gini impurity. The classification accuracy of the support vector machines (SVM) classifier is verified by comparing the characteristics of the full band with the characteristics of the β band. The results show that the characteristics of the β band are the most sensitive in EEG data under different mental workloads.


Sign in / Sign up

Export Citation Format

Share Document