scholarly journals An EEG Neurofeedback Interactive Model for Emotional Classification of Electronic Music Compositions Considering Multi-Brain Synergistic Brain-Computer Interfaces

2022 ◽  
Vol 12 ◽  
Author(s):  
Mingxing Liu

This paper presents an in-depth study and analysis of the emotional classification of EEG neurofeedback interactive electronic music compositions using a multi-brain collaborative brain-computer interface (BCI). Based on previous research, this paper explores the design and performance of sound visualization in an interactive format from the perspective of visual performance design and the psychology of participating users with the help of knowledge from various disciplines such as psychology, acoustics, aesthetics, neurophysiology, and computer science. This paper proposes a specific mapping model for the conversion of sound to visual expression based on people’s perception and aesthetics of sound based on the phenomenon of audiovisual association, which provides a theoretical basis for the subsequent research. Based on the mapping transformation pattern between audio and visual, this paper investigates the realization path of interactive sound visualization, the visual expression form and its formal composition, and the aesthetic style, and forms a design expression method for the visualization of interactive sound, to benefit the practice of interactive sound visualization. In response to the problem of neglecting the real-time and dynamic nature of the brain in traditional brain network research, dynamic brain networks proposed for analyzing the EEG signals induced by long-time music appreciation. During prolonged music appreciation, the connectivity of the brain changes continuously. We used mutual information on different frequency bands of EEG signals to construct dynamic brain networks, observe changes in brain networks over time and use them for emotion recognition. We used the brain network for emotion classification and achieved an emotion recognition rate of 67.3% under four classifications, exceeding the highest recognition rate available.

Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1234
Author(s):  
Lingyun Zhang ◽  
Taorong Qiu ◽  
Zhiqiang Lin ◽  
Shuli Zou ◽  
Xiaoming Bai

Functional brain network (FBN) is an intuitive expression of the dynamic neural activity interaction between different neurons, neuron clusters, or cerebral cortex regions. It can characterize the brain network topology and dynamic properties. The method of building an FBN to characterize the features of the brain network accurately and effectively is a challenging subject. Entropy can effectively describe the complexity, non-linearity, and uncertainty of electroencephalogram (EEG) signals. As a relatively new research direction, the research of the FBN construction method based on EEG data of fatigue driving has broad prospects. Therefore, it is of great significance to study the entropy-based FBN construction. We focus on selecting appropriate entropy features to characterize EEG signals and construct an FBN. On the real data set of fatigue driving, FBN models based on different entropies are constructed to identify the state of fatigue driving. Through analyzing network measurement indicators, the experiment shows that the FBN model based on fuzzy entropy can achieve excellent classification recognition rate and good classification stability. In addition, when compared with the other model based on the same data set, our model could obtain a higher accuracy and more stable classification results even if the length of the intercepted EEG signal is different.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 984
Author(s):  
Longxin Yao ◽  
Mingjiang Wang ◽  
Yun Lu ◽  
Heng Li ◽  
Xue Zhang

It is well known that there may be significant individual differences in physiological signal patterns for emotional responses. Emotion recognition based on electroencephalogram (EEG) signals is still a challenging task in the context of developing an individual-independent recognition method. In our paper, from the perspective of spatial topology and temporal information of brain emotional patterns in an EEG, we exploit complex networks to characterize EEG signals to effectively extract EEG information for emotion recognition. First, we exploit visibility graphs to construct complex networks from EEG signals. Then, two kinds of network entropy measures (nodal degree entropy and clustering coefficient entropy) are calculated. By applying the AUC method, the effective features are input into the SVM classifier to perform emotion recognition across subjects. The experiment results showed that, for the EEG signals of 62 channels, the features of 18 channels selected by AUC were significant (p < 0.005). For the classification of positive and negative emotions, the average recognition rate was 87.26%; for the classification of positive, negative, and neutral emotions, the average recognition rate was 68.44%. Our method improves mean accuracy by an average of 2.28% compared with other existing methods. Our results fully demonstrate that a more accurate recognition of emotional EEG signals can be achieved relative to the available relevant studies, indicating that our method can provide more generalizability in practical use.


2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Blake R. Neyland ◽  
Christina E. Hugenschmidt ◽  
Robert G. Lyday ◽  
Jonathan H. Burdette ◽  
Laura D. Baker ◽  
...  

Elucidating the neural correlates of mobility is critical given the increasing population of older adults and age-associated mobility disability. In the current study, we applied graph theory to cross-sectional data to characterize functional brain networks generated from functional magnetic resonance imaging data both at rest and during a motor imagery (MI) task. Our MI task is derived from the Mobility Assessment Tool–short form (MAT-sf), which predicts performance on a 400 m walk, and the Short Physical Performance Battery (SPPB). Participants (n = 157) were from the Brain Networks and Mobility (B-NET) Study (mean age = 76.1 ± 4.3; % female = 55.4; % African American = 8.3; mean years of education = 15.7 ± 2.5). We used community structure analyses to partition functional brain networks into communities, or subnetworks, of highly interconnected regions. Global brain network community structure decreased during the MI task when compared to the resting state. We also examined the community structure of the default mode network (DMN), sensorimotor network (SMN), and the dorsal attention network (DAN) across the study population. The DMN and SMN exhibited a task-driven decline in consistency across the group when comparing the MI task to the resting state. The DAN, however, displayed an increase in consistency during the MI task. To our knowledge, this is the first study to use graph theory and network community structure to characterize the effects of a MI task, such as the MAT-sf, on overall brain network organization in older adults.


2020 ◽  
pp. 1-2
Author(s):  
Zhang- sensen

mild cognitive impairment (MCI) is a condition between healthy elderly people and alzheimer's disease (AD). At present, brain network analysis based on machine learning methods can help diagnose MCI. In this paper, the brain network is divided into several subnets based on the shortest path,and the feature vectors of each subnet are extracted and classified. In order to make full use of subnet information, this paper adopts integrated classification model for classification.Each base classification model can predict the classification of a subnet,and the classification results of all subnets are calculated as the classification results of brain network.In order to verify the effectiveness of this method,a brain network of 66 people was constructed and a comparative experiment was carried out.The experimental results show that the classification accuracy of the integrated classification model proposed in this paper is 19% higher than that of SVM,which effectively improves the classification accuracy


2019 ◽  
Author(s):  
Aya Kabbara ◽  
Veronique Paban ◽  
Arnaud Weill ◽  
Julien Modolo ◽  
Mahmoud Hassan

AbstractIntroductionIdentifying the neural substrates underlying the personality traits is a topic of great interest. On the other hand, it is now established that the brain is a dynamic networked system which can be studied using functional connectivity techniques. However, much of the current understanding of personality-related differences in functional connectivity has been obtained through the stationary analysis, which does not capture the complex dynamical properties of brain networks.ObjectiveIn this study, we aimed to evaluate the feasibility of using dynamic network measures to predict personality traits.MethodUsing the EEG/MEG source connectivity method combined with a sliding window approach, dynamic functional brain networks were reconstructed from two datasets: 1) Resting state EEG data acquired from 56 subjects. 2) Resting state MEG data provided from the Human Connectome Project. Then, several dynamic functional connectivity metrics were evaluated.ResultsSimilar observations were obtained by the two modalities (EEG and MEG) according to the neuroticism, which showed a negative correlation with the dynamic variability of resting state brain networks. In particular, a significant relationship between this personality trait and the dynamic variability of the temporal lobe regions was observed. Results also revealed that extraversion and openness are positively correlated with the dynamics of the brain networks.ConclusionThese findings highlight the importance of tracking the dynamics of functional brain networks to improve our understanding about the neural substrates of personality.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shu Guo ◽  
Xiaoqi Chen ◽  
Yimeng Liu ◽  
Rui Kang ◽  
Tao Liu ◽  
...  

The brain network is one specific type of critical infrastructure networks, which supports the cognitive function of biological systems. With the importance of network reliability in system design, evaluation, operation, and maintenance, we use the percolation methods of network reliability on brain networks and study the network resistance to disturbances and relevant failure modes. In this paper, we compare the brain networks of different species, including cat, fly, human, mouse, and macaque. The differences in structural features reflect the requirements for varying levels of functional specialization and integration, which determine the reliability of brain networks. In the percolation process, we apply different forms of disturbances to the brain networks based on metrics that characterize the network structure. Our findings suggest that the brain networks are mostly reliable against random or k-core-based percolation with their structure design, yet becomes vulnerable under betweenness or degree-based percolation. Our results might be useful to identify and distinguish brain connectivity failures that have been shown to be related to brain disorders, as well as the reliability design of other technological networks.


Author(s):  
A. Thushara ◽  
C. Ushadevi Amma ◽  
Ansamma John

Alzheimer’s Disease (AD) is basically a progressive neurodegenerative disorder associated with abnormal brain networks that affect millions of elderly people and degrades their quality of life. The abnormalities in brain networks are due to the disruption of White Matter (WM) fiber tracts that connect the brain regions. Diffusion-Weighted Imaging (DWI) captures the brain’s WM integrity. Here, the correlation betwixt the WM degeneration and also AD is investigated by utilizing graph theory as well as Machine Learning (ML) algorithms. By using the DW image obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, the brain graph of each subject is constructed. The features extracted from the brain graph form the basis to differentiate between Mild Cognitive Impairment (MCI), Control Normal (CN) and AD subjects. Performance evaluation is done using binary and multiclass classification algorithms and obtained an accuracy that outperforms the current top-notch DWI-based studies.


Author(s):  
Sravanth Kumar Ramakuri ◽  
Chinmay Chakraboirty ◽  
Anudeep Peddi ◽  
Bharat Gupta

In recent years, a vast research is concentrated towards the development of electroencephalography (EEG)-based human-computer interface in order to enhance the quality of life for medical as well as nonmedical applications. The EEG is an important measurement of brain activity and has great potential in helping in the diagnosis and treatment of mental and brain neuro-degenerative diseases and abnormalities. In this chapter, the authors discuss the classification of EEG signals as a key issue in biomedical research for identification and evaluation of the brain activity. Identification of various types of EEG signals is a complicated problem, requiring the analysis of large sets of EEG data. Representative features from a large dataset play an important role in classifying EEG signals in the field of biomedical signal processing. So, to reduce the above problem, this research uses three methods to classify through feature extraction and classification schemes.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Anna Lardone ◽  
Marianna Liparoti ◽  
Pierpaolo Sorrentino ◽  
Rosaria Rucco ◽  
Francesca Jacini ◽  
...  

It has been suggested that the practice of meditation is associated to neuroplasticity phenomena, reducing age-related brain degeneration and improving cognitive functions. Neuroimaging studies have shown that the brain connectivity changes in meditators. In the present work, we aim to describe the possible long-term effects of meditation on the brain networks. To this aim, we used magnetoencephalography to study functional resting-state brain networks in Vipassana meditators. We observed topological modifications in the brain network in meditators compared to controls. More specifically, in the theta band, the meditators showed statistically significant (p corrected = 0.009) higher degree (a centrality index that represents the number of connections incident upon a given node) in the right hippocampus as compared to controls. Taking into account the role of the hippocampus in memory processes, and in the pathophysiology of Alzheimer’s disease, meditation might have a potential role in a panel of preventive strategies.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 300 ◽  
Author(s):  
Shuaizong Si ◽  
Bin Wang ◽  
Xiao Liu ◽  
Chong Yu ◽  
Chao Ding ◽  
...  

Alzheimer’s disease (AD) is a progressive disease that causes problems of cognitive and memory functions decline. Patients with AD usually lose their ability to manage their daily life. Exploring the progression of the brain from normal controls (NC) to AD is an essential part of human research. Although connection changes have been found in the progression, the connection mechanism that drives these changes remains incompletely understood. The purpose of this study is to explore the connection changes in brain networks in the process from NC to AD, and uncovers the underlying connection mechanism that shapes the topologies of AD brain networks. In particular, we propose a mutual information brain network model (MINM) from the perspective of graph theory to achieve our aim. MINM concerns the question of estimating the connection probability between two cortical regions with the consideration of both the mutual information of their observed network topologies and their Euclidean distance in anatomical space. In addition, MINM considers establishing and deleting connections, simultaneously, during the networks modeling from the stage of NC to AD. Experiments show that MINM is sufficient to capture an impressive range of topological properties of real brain networks such as characteristic path length, network efficiency, and transitivity, and it also provides an excellent fit to the real brain networks in degree distribution compared to experiential models. Thus, we anticipate that MINM may explain the connection mechanism for the formation of the brain network organization in AD patients.


Sign in / Sign up

Export Citation Format

Share Document