scholarly journals A Hybrid Metaheuristic Based on Neurocomputing for Analysis of Unipolar Electrohydrodynamic Pump Flow

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1513
Author(s):  
Muhammad Fawad Khan ◽  
Muhammad Sulaiman ◽  
Carlos Andrés Tavera Romero ◽  
Ali Alkhathlan

A unipolar electrohydrodynamic (UP-EHD) pump flow is studied with known electric potential at the emitter and zero electric potential at the collector. The model is designed for electric potential, charge density, and electric field. The dimensionless parameters, namely the electrical source number (Es), the electrical Reynolds number (ReE), and electrical slip number (Esl), are considered with wide ranges of variation to analyze the UP-EHD pump flow. To interpret the pump flow of the UP-EHD model, a hybrid metaheuristic solver is designed, consisting of the recently developed technique sine–cosine algorithm (SCA) and sequential quadratic programming (SQP) under the influence of an artificial neural network. The method is abbreviated as ANN-SCA-SQP. The superiority of the technique is shown by comparing the solution with reference solutions. For a large data set, the technique is executed for one hundred independent experiments. The performance is evaluated through performance operators and convergence plots.

Large data clustering and classification is a very challenging task in data mining. Various machine learning and deep learning systems have been proposed by many researchers on a different dataset. Data volume, data size and structure of data may affect the time complexity of the system. This paper described a new document object classification approach using deep learning (DL) and proposed a recurrent neural network (RNN) for classification with a micro-clustering approach.TF-IDF and a density-based approach are used to store the best features. The plane work used supervised learning method and it extracts features set called as BK of the desired classes. once the training part completed then proceeds to figure out the particular test instances with the help of the planned classification algorithm. Recurrent Neural Network categorized the particular test object according to their weights. The system can able to work on heterogeneous data set and generate the micro-clusters according to classified results. The system also carried out experimental analysis with classical machine learning algorithms. The proposed algorithm shows higher accuracy than the existing density-based approach on different data sets.


Author(s):  
Khaled Daqrouq ◽  
Sheng Chen ◽  
Emad Khalaf ◽  
Ali Morfeqa ◽  
Muntasir Sheikha ◽  
...  

Recently, wavelet transform (WT) has been enormously effectual in various scientific fields. As a matter of fact, WT has overcome the FFT in the difficult nature data tackling. A wavelet entropy based probabilistic neural network (PNN) for classification applications is proposed. Specifically, wavelet transform is performed on the original input feature data, and the entropy values of the wavelet decomposition signals are then extracted to use as the input to the PNN classifier. Two benchmark data sets, Breast Cancer and Diabetes, are used to demonstrate the efficiency of our proposed wavelet entropy based PNN (WEPNN) classifier. The test classification rates of 80.3% and 77.0% are achieved respectively for the two data sets using the WEPNN with Shannon entropy. Other published methods are used for comparison. The method is promising. For results accuracy enhancement, large data set might be utilized in the future work.


2019 ◽  
Vol 1 (3) ◽  
pp. 42-48
Author(s):  
Mohammed Z. Al-Faiz ◽  
Ali A. Ibrahim ◽  
Sarmad M. Hadi

The speed of learning in neural network environment is considered as the most effective parameter spatially in large data sets. This paper tries to minimize the time required for the neural network to fully understand and learn about the data by standardize input data. The paper showed that the Z-Score standardization of input data significantly decreased the number of epoochs required for the network to learn. This paper also proved that the binary dataset is a serious limitation for the convergence of neural network, so the standardization is a must in such case where the 0’s inputs simply neglect the connections in the neural network. The data set used in this paper are features extracted from gel electrophoresis images and that open the door for using artificial intelligence in such areas.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1448
Author(s):  
Muhammad Fawad Khan ◽  
Muhammad Sulaiman ◽  
Carlos Andrés Tavera Romero ◽  
Ali Alkhathlan

In this work, an important model in fluid dynamics is analyzed by a new hybrid neurocomputing algorithm. We have considered the Falkner–Skan (FS) with the stream-wise pressure gradient transfer of mass over a dynamic wall. To analyze the boundary flow of the FS model, we have utilized the global search characteristic of a recently developed heuristic, the Sine Cosine Algorithm (SCA), and the local search characteristic of Sequential Quadratic Programming (SQP). Artificial neural network (ANN) architecture is utilized to construct a series solution of the mathematical model. We have called our technique the ANN-SCA-SQP algorithm. The dynamic of the FS system is observed by varying stream-wise pressure gradient mass transfer and dynamic wall. To validate the effectiveness of ANN-SCA-SQP algorithm, our solutions are compared with state-of-the-art reference solutions. We have repeated a hundred experiments to establish the robustness of our approach. Our experimental outcome validates the superiority of the ANN-SCA-SQP algorithm.


2017 ◽  
Vol 10 (11) ◽  
pp. 4235-4252 ◽  
Author(s):  
Antonio Di Noia ◽  
Otto P. Hasekamp ◽  
Lianghai Wu ◽  
Bastiaan van Diedenhoven ◽  
Brian Cairns ◽  
...  

Abstract. In this paper, an algorithm for the retrieval of aerosol and land surface properties from airborne spectropolarimetric measurements – combining neural networks and an iterative scheme based on Phillips–Tikhonov regularization – is described. The algorithm – which is an extension of a scheme previously designed for ground-based retrievals – is applied to measurements from the Research Scanning Polarimeter (RSP) on board the NASA ER-2 aircraft. A neural network, trained on a large data set of synthetic measurements, is applied to perform aerosol retrievals from real RSP data, and the neural network retrievals are subsequently used as a first guess for the Phillips–Tikhonov retrieval. The resulting algorithm appears capable of accurately retrieving aerosol optical thickness, fine-mode effective radius and aerosol layer height from RSP data. Among the advantages of using a neural network as initial guess for an iterative algorithm are a decrease in processing time and an increase in the number of converging retrievals.


2020 ◽  
Vol 39 (5) ◽  
pp. 6419-6430
Author(s):  
Dusan Marcek

To forecast time series data, two methodological frameworks of statistical and computational intelligence modelling are considered. The statistical methodological approach is based on the theory of invertible ARIMA (Auto-Regressive Integrated Moving Average) models with Maximum Likelihood (ML) estimating method. As a competitive tool to statistical forecasting models, we use the popular classic neural network (NN) of perceptron type. To train NN, the Back-Propagation (BP) algorithm and heuristics like genetic and micro-genetic algorithm (GA and MGA) are implemented on the large data set. A comparative analysis of selected learning methods is performed and evaluated. From performed experiments we find that the optimal population size will likely be 20 with the lowest training time from all NN trained by the evolutionary algorithms, while the prediction accuracy level is lesser, but still acceptable by managers.


2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


1992 ◽  
Author(s):  
Rupert S. Hawkins ◽  
K. F. Heideman ◽  
Ira G. Smotroff

2019 ◽  
Vol 21 (9) ◽  
pp. 662-669 ◽  
Author(s):  
Junnan Zhao ◽  
Lu Zhu ◽  
Weineng Zhou ◽  
Lingfeng Yin ◽  
Yuchen Wang ◽  
...  

Background: Thrombin is the central protease of the vertebrate blood coagulation cascade, which is closely related to cardiovascular diseases. The inhibitory constant Ki is the most significant property of thrombin inhibitors. Method: This study was carried out to predict Ki values of thrombin inhibitors based on a large data set by using machine learning methods. Taking advantage of finding non-intuitive regularities on high-dimensional datasets, machine learning can be used to build effective predictive models. A total of 6554 descriptors for each compound were collected and an efficient descriptor selection method was chosen to find the appropriate descriptors. Four different methods including multiple linear regression (MLR), K Nearest Neighbors (KNN), Gradient Boosting Regression Tree (GBRT) and Support Vector Machine (SVM) were implemented to build prediction models with these selected descriptors. Results: The SVM model was the best one among these methods with R2=0.84, MSE=0.55 for the training set and R2=0.83, MSE=0.56 for the test set. Several validation methods such as yrandomization test and applicability domain evaluation, were adopted to assess the robustness and generalization ability of the model. The final model shows excellent stability and predictive ability and can be employed for rapid estimation of the inhibitory constant, which is full of help for designing novel thrombin inhibitors.


Sign in / Sign up

Export Citation Format

Share Document