scholarly journals Security Analysis of Continuous-Variable Measurement-Device-Independent Quantum Key Distribution Systems in Complex Communication Environments

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 127
Author(s):  
Yi Zheng ◽  
Haobin Shi ◽  
Wei Pan ◽  
Quantao Wang ◽  
Jiahui Mao

Continuous-variable measure-device-independent quantum key distribution (CV-MDI QKD) is proposed to remove all imperfections originating from detection. However, there are still some inevitable imperfections in a practical CV-MDI QKD system. For example, there is a fluctuating channel transmittance in the complex communication environments. Here we investigate the security of the system under the effects of the fluctuating channel transmittance, where the transmittance is regarded as a fixed value related to communication distance in theory. We first discuss the parameter estimation in fluctuating channel transmittance based on these establishing of channel models, which has an obvious deviation compared with the estimated parameters in the ideal case. Then, we show the evaluated results when the channel transmittance respectively obeys the two-point distribution and the uniform distribution. In particular, the two distributions can be easily realized under the manipulation of eavesdroppers. Finally, we analyze the secret key rate of the system when the channel transmittance obeys the above distributions. The simulation analysis indicates that a slight fluctuation of the channel transmittance may seriously reduce the performance of the system, especially in the extreme asymmetric case. Furthermore, the communication between Alice, Bob and Charlie may be immediately interrupted. Therefore, eavesdroppers can manipulate the channel transmittance to complete a denial-of-service attack in a practical CV-MDI QKD system. To resist this attack, the Gaussian post-selection method can be exploited to calibrate the parameter estimation to reduce the deterioration of performance of the system.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kadir Gümüş ◽  
Tobias A. Eriksson ◽  
Masahiro Takeoka ◽  
Mikio Fujiwara ◽  
Masahide Sasaki ◽  
...  

AbstractReconciliation is a key element of continuous-variable quantum key distribution (CV-QKD) protocols, affecting both the complexity and performance of the entire system. During the reconciliation protocol, error correction is typically performed using low-density parity-check (LDPC) codes with a single decoding attempt. In this paper, we propose a modification to a conventional reconciliation protocol used in four-state protocol CV-QKD systems called the multiple decoding attempts (MDA) protocol. MDA uses multiple decoding attempts with LDPC codes, each attempt having fewer decoding iteration than the conventional protocol. Between each decoding attempt we propose to reveal information bits, which effectively lowers the code rate. MDA is shown to outperform the conventional protocol in regards to the secret key rate (SKR). A 10% decrease in frame error rate and an 8.5% increase in SKR are reported in this paper. A simple early termination for the LDPC decoder is also proposed and implemented. With early termination, MDA has decoding complexity similar to the conventional protocol while having an improved SKR.


2019 ◽  
Vol 9 (22) ◽  
pp. 4956 ◽  
Author(s):  
Xinchao Ruan ◽  
Hang Zhang ◽  
Wei Zhao ◽  
Xiaoxue Wang ◽  
Xuan Li ◽  
...  

We investigate the optical absorption and scattering properties of four different kinds of seawater as the quantum channel. The models of discrete-modulated continuous-variable quantum key distribution (CV-QKD) in free-space seawater channel are briefly described, and the performance of the four-state protocol and the eight-state protocol in asymptotic and finite-size cases is analyzed in detail. Simulation results illustrate that the more complex is the seawater composition, the worse is the performance of the protocol. For different types of seawater channels, we can improve the performance of the protocol by selecting different optimal modulation variances and controlling the extra noise on the channel. Besides, we can find that the performance of the eight-state protocol is better than that of the four-state protocol, and there is little difference between homodyne detection and heterodyne detection. Although the secret key rate of the protocol that we propose is still relatively low and the maximum transmission distance is only a few hundred meters, the research on CV-QKD over the seawater channel is of great significance, which provides a new idea for the construction of global secure communication network.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 571
Author(s):  
Yuang Wang ◽  
Shanhua Zou ◽  
Yun Mao ◽  
Ying Guo

Underwater quantumkey distribution (QKD) is tough but important formodern underwater communications in an insecure environment. It can guarantee secure underwater communication between submarines and enhance safety for critical network nodes. To enhance the performance of continuous-variable quantumkey distribution (CVQKD) underwater in terms ofmaximal transmission distance and secret key rate as well, we adopt measurement-device-independent (MDI) quantum key distribution with the zero-photon catalysis (ZPC) performed at the emitter of one side, which is the ZPC-based MDI-CVQKD. Numerical simulation shows that the ZPC-involved scheme, which is a Gaussian operation in essence, works better than the single photon subtraction (SPS)-involved scheme in the extreme asymmetric case. We find that the transmission of the ZPC-involved scheme is longer than that of the SPS-involved scheme. In addition, we consider the effects of temperature, salinity and solar elevation angle on the system performance in pure seawater. The maximal transmission distance decreases with the increase of temperature and the decrease of sunlight elevation angle, while it changes little over a broad range of salinity


2012 ◽  
Vol 10 (05) ◽  
pp. 1250059 ◽  
Author(s):  
MAOZHU SUN ◽  
XIANG PENG ◽  
YUJIE SHEN ◽  
HONG GUO

The original two-way continuous-variable quantum-key-distribution (CV-QKD) protocols [S. Pirandola, S. Mancini, S. Lloyd and S. L. Braunstein, Nat. Phys. 4 (2008) 726] give the security against the collective attack on the condition of the tomography of the quantum channels. We propose a family of new two-way CV-QKD protocols and prove their security against collective entangling cloner attacks without the tomography of the quantum channels. The simulation result indicates that the new protocols maintain the same advantage as the original two-way protocols whose tolerable excess noise surpasses that of the one-way CV-QKD protocol. We also show that all sub-protocols within the family have higher secret key rate and much longer transmission distance than the one-way CV-QKD protocol for the noisy channel.


2015 ◽  
Vol 23 (17) ◽  
pp. 22190 ◽  
Author(s):  
Dakai Lin ◽  
Peng Huang ◽  
Duan Huang ◽  
Chao Wang ◽  
Jinye Peng ◽  
...  

Author(s):  
Zhengchun Zhou ◽  
Shanhua Zou ◽  
Yun Mao ◽  
Tongcheng Huang ◽  
Ying Guo

Establishing global high-rate secure communications is a potential application of continuous-variable quantum key distribution (CVQKD) but also challenging for long-distance transmissions in metropolitan areas. The discrete modulation(DM) can make up for the shortage of transmission distance that has a unique advantage against all side-channel attacks, however its further performance improvement requires source preparation in the presence of noise and loss. Here, we consider the effects of photon catalysis (PC) on the DM-involved source preparation for lengthening the maximal transmission distance of the CVQKD system. We address a zero-photon catalysis (ZPC)-based source preparation for enhancing the DM-CVQKD system. The statistical fluctuation due to the finite length of data is taken into account for the practical security analysis. Numerical simulations show that the ZPC-based DM-CVQKD system can not only achieve the extended maximal transmission distance, but also contributes to the reasonable increase of the secret key rate. This approach enables the DM-CVQKD to tolerate lower reconciliation efficiency, which may promote the practical implementation solutions compatible with classical optical communications using state-of-the-art technology.


2021 ◽  
Author(s):  
Heng Wang ◽  
Yang Li ◽  
Yaodi Pi ◽  
Yan Pan ◽  
Yun Shao ◽  
...  

Abstract Continuous-variable quantum key distribution (CVQKD) has potential advantages of high secret key rate, which is very suitable for high-speed metropolitan network application. However, the reported highest secret key rates of the CVQKD systems up to now are limited in a few Mbps. Here, we address the fundamental experimental problems and demonstrate a single-carrier four-state CVQKD with sub-Gbps key rate within metropolitan area. In the demonstrated four-state CVQKD using local local oscillator, an ultra-low level of excess noise is obtained and a high efficient post-processing setup is designed for practically extracting the final secure keys. Thus, the achieved secure key rates are 190.54 Mbps and 137.76 Mbps and 52.48 Mbps using linear channel assuming security analysis method and 233.87 Mbps, 133.6 Mbps and 21.53 Mbps using semidefinite programming security analysis method over transmission distances of 5 km, 10 km and 25 km, respectively. This record-breaking result increases the previous secret key rate record by an order of magnitude, which is sufficient to achieve the one-time pad cryptographic task. Our work shows the road for future high-rate and large-scale CVQKD deployment in secure broadband metropolitan and access networks.


Sign in / Sign up

Export Citation Format

Share Document