scholarly journals Embodied Simulations of Forces of Nature and the Role of Energy in Physical Systems

2021 ◽  
Vol 11 (12) ◽  
pp. 759
Author(s):  
Hans U. Fuchs ◽  
Federico Corni ◽  
Angelika Pahl

We experience (perceive, act upon and react to, and conceptualize) dynamical processes in nature as agentive. Expressed differently, we experience events as resulting from activities and interactions of Forces of Nature (such as wind, light, heat, fluids, electricity, substances, and motion) that are conceived of as powerful agents acting and interacting in physical environments. An example would be sunlight creating heat in the Earth’s surface layers, and this heat using the atmosphere as a heat engine whose output are the winds on our planet. In the physics of dynamical systems, these forces are characterized in terms of intensive and extensive quantities (i.e., electric potential and electric charge in the case of electricity). The aspect of power is formalized with the help of a generalized energy principle and the rules relating power/energy to intensive and extensive physical quantities. Concrete processes depend upon properties of physical materials (in and through which forces are active) such as (thermal, electrical, etc.) capacity or conductivity. In this paper, we demonstrate how we can create Embodied Simulations and Forces-of-Nature Theater performances, where children act as forces such as water, heat, electricity, and motion. The embodied logic of the physical play teaches children about the logic of our explanations of physical processes.

Author(s):  
Thomas S. Henricks

This chapter examines the link between play and nature, or more specifically, the human body. Our feats of thinking, feeling, and acting depend profoundly on structures of the body and the brain. Decisions to play are conditioned by our physical forms. Feelings about what we are doing—registered as sensations and emotions—arise from long-established physical processes. And we move through the world only as our bodies permit. Understanding play means understanding these physical processes. In that context, the chapter focuses on the consequences of play for physiology. It reviews studies of bodily movement, brain activity, consciousness, and affect in both humans and animals. It also explores animal play, classic theories of physical play, the role of the organism in play, play as an expression of surplus resources, and the role of brain in play.


2019 ◽  
Vol 32 (14) ◽  
pp. 4215-4234 ◽  
Author(s):  
Qin Su ◽  
Buwen Dong

Abstract Observational analysis indicates significant decadal changes in daytime, nighttime, and compound (both daytime and nighttime) heat waves (HWs) over China across the mid-1990s, featuring a rapid increase in frequency, intensity, and spatial extent. The variations of these observed decadal changes are assessed by the comparison between the present day (PD) of 1994–2011 and the early period (EP) of 1964–81. The compound HWs change most remarkably in all three aspects, with frequency averaged over China in the PD tripling that in the EP and intensity and spatial extent nearly doubling. The daytime and nighttime HWs also change significantly in all three aspects. A set of numerical experiments is used to investigate the drivers and physical processes responsible for the decadal changes of the HWs. Results indicate the predominant role of the anthropogenic forcing, including changes in greenhouse gas (GHG) concentrations and anthropogenic aerosol (AA) emissions in the HW decadal changes. The GHG changes have dominant impacts on the three types of HWs, while the AA changes make significant influences on daytime HWs. The GHG changes increase the frequency, intensity, and spatial extent of the three types of HWs over China both directly via the strengthened greenhouse effect and indirectly via land–atmosphere and circulation feedbacks in which GHG-change-induced warming in sea surface temperature plays an important role. The AA changes decrease the frequency and intensity of daytime HWs over Southeastern China through mainly aerosol–radiation interaction, but increase the frequency and intensity of daytime HWs over Northeastern China through AA-change-induced surface–atmosphere feedbacks and dynamical changes related to weakened East Asian summer monsoon.


2013 ◽  
Vol 26 (21) ◽  
pp. 8513-8528 ◽  
Author(s):  
Megan S. Mallard ◽  
Gary M. Lackmann ◽  
Anantha Aiyyer

Abstract A method of downscaling that isolates the effect of temperature and moisture changes on tropical cyclone (TC) activity was presented in Part I of this study. By applying thermodynamic modifications to analyzed initial and boundary conditions from past TC seasons, initial disturbances and the strength of synoptic-scale vertical wind shear are preserved in future simulations. This experimental design allows comparison of TC genesis events in the same synoptic setting, but in current and future thermodynamic environments. Simulations of both an active (September 2005) and inactive (September 2009) portion of past hurricane seasons are presented. An ensemble of high-resolution simulations projects reductions in ensemble-average TC counts between 18% and 24%, consistent with previous studies. Robust decreases in TC and hurricane counts are simulated with 18- and 6-km grid lengths, for both active and inactive periods. Physical processes responsible for reduced activity are examined through comparison of monthly and spatially averaged genesis-relevant parameters, as well as case studies of development of corresponding initial disturbances in current and future thermodynamic conditions. These case studies show that reductions in TC counts are due to the presence of incipient disturbances in marginal moisture environments, where increases in the moist entropy saturation deficits in future conditions preclude genesis for some disturbances. Increased convective inhibition and reduced vertical velocity are also found in the future environment. It is concluded that a robust decrease in TC frequency can result from thermodynamic changes alone, without modification of vertical wind shear or the number of incipient disturbances.


2021 ◽  
pp. 271-278
Author(s):  
Ravi Kumar J S ◽  
T. Narayana Reddy ◽  
Syed Mohammad Ghouse

In recent years there has been increased discussion of the subjective, emotional and sociological factors influencing student choice of university. However, there is a dearth of information exploring what constitutes these feelings. This exploratory paper uses the conceptual model of the servicescape to provide insight into the emotional factors driving student choice. In-depth interviews with prospective students revealed that first impressions really do count. Students are deterred by poor physical environments and excited by enthusiastic staff and students. Most significantly, the study revealed the necessity of a restorative servicescape to provide both a sense of escape and feeling of belonging. This paper contributes to broadening the application of the servicescape model and to a greater understanding of the impact of the environment on prospective students, and creates an opportunity to inform policy by providing university marketing decision makers with a better understanding of what constitutes the university environment and what makes it appealing to prospective students.


2018 ◽  
Vol 111 ◽  
pp. 6-13 ◽  
Author(s):  
Elizabeth L. Budd ◽  
Amy McQueen ◽  
Amy A. Eyler ◽  
Debra Haire-Joshu ◽  
Wendy F. Auslander ◽  
...  

Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 865 ◽  
Author(s):  
Julian Gonzalez-Ayala ◽  
Moises Santillán ◽  
Maria Santos ◽  
Antonio Calvo Hernández ◽  
José Mateos Roco

Local stability of maximum power and maximum compromise (Omega) operation regimes dynamic evolution for a low-dissipation heat engine is analyzed. The thermodynamic behavior of trajectories to the stationary state, after perturbing the operation regime, display a trade-off between stability, entropy production, efficiency and power output. This allows considering stability and optimization as connected pieces of a single phenomenon. Trajectories inside the basin of attraction display the smallest entropy drops. Additionally, it was found that time constraints, related with irreversible and endoreversible behaviors, influence the thermodynamic evolution of relaxation trajectories. The behavior of the evolution in terms of the symmetries of the model and the applied thermal gradients was analyzed.


1966 ◽  
Vol 181 (1) ◽  
pp. 169-184 ◽  
Author(s):  
R. Bell ◽  
M. Burdekin

The friction characteristics resulting from the motion of one surface over another form a very important facet of the behaviour of many physical systems. This statement is particularly valid when considering the behaviour of machine tool slideways. Most slideway elements consist of two plain surfaces whose friction characteristic is modified by the addition of a lubricant. In many cases the complete slideway consists of many mating surfaces and the choice of slideway material, slideway machining and lubricant is often influenced by the long term problem of wear. The aim of this paper is to present results of experiments on a test rig designed to be representative of machine tool slideway conditions; the experiments were wholly concerned with the behaviour of the bearing under dynamic conditions. The major emphasis is on results obtained with a polar additive lubricant which appears to exclude the possibility of ‘stick-slip’ oscillations. A parallel series of tests are reported where a normal hydraulic oil was used as lubricant. The use of this second lubricant allowed some study of the ‘stick-slip’ process. The dynamic friction characteristics, cyclic friction characteristics and damping capacity of several slideway surface combinations have been obtained and are discussed in the context of earlier work in the field and the role of slideways in machine tool behaviour.


Author(s):  
J. Nichols ◽  
Albert Cohen ◽  
Peter Binev ◽  
Olga Mula

Parametric PDEs of the general form $$ \mathcal{P}(u,a)=0 $$ are commonly used to describe many physical processes, where $\mathcal{P}$ is a differential operator, a is a high-dimensional vector of parameters and u is the unknown solution belonging to some Hilbert space V. Typically one observes m linear measurements of u(a) of the form $\ell_i(u)=\langle w_i,u \rangle$, $i=1,\dots,m$, where $\ell_i\in V'$ and $w_i$ are the Riesz representers, and we write $W_m = \text{span}\{w_1,\ldots,w_m\}$. The goal is to recover an approximation $u^*$ of u from the measurements. The solutions u(a) lie in a manifold within V which we can approximate by a linear space $V_n$, where n is of moderate dimension. The structure of the PDE ensure that for any a the solution is never too far away from $V_n$, that is, $\text{dist}(u(a),V_n)\le \varepsilon$. In this setting, the observed measurements and $V_n$ can be combined to produce an approximation $u^*$ of u up to accuracy $$ \Vert u -u^*\Vert \leq \beta^{-1}(V_n,W_m) \, \varepsilon $$ where $$ \beta(V_n,W_m) := \inf_{v\in V_n} \frac{\Vert P_{W_m}v\Vert}{\Vert v \Vert} $$ plays the role of a stability constant. For a given $V_n$, one relevant objective is to guarantee that $\beta(V_n,W_m)\geq \gamma >0$ with a number of measurements $m\geq n$ as small as possible. We present results in this direction when the measurement functionals $\ell_i$ belong to a complete dictionary.


Sign in / Sign up

Export Citation Format

Share Document