scholarly journals Developments of the Electroactive Materials for Non-Enzymatic Glucose Sensing and Their Mechanisms

Electrochem ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 347-389
Author(s):  
Wan-Ting Chiu ◽  
Tso-Fu Mark Chang ◽  
Masato Sone ◽  
Hideki Hosoda ◽  
Agnès Tixier-Mita ◽  
...  

A comprehensive review of the electroactive materials for non-enzymatic glucose sensing and sensing devices has been performed in this work. A general introduction for glucose sensing, a facile electrochemical technique for glucose detection, and explanations of fundamental mechanisms for the electro-oxidation of glucose via the electrochemical technique are conducted. The glucose sensing materials are classified into five major systems: (1) mono-metallic materials, (2) bi-metallic materials, (3) metallic-oxide compounds, (4) metallic-hydroxide materials, and (5) metal-metal derivatives. The performances of various systems within this decade have been compared and explained in terms of sensitivity, linear regime, the limit of detection (LOD), and detection potentials. Some promising materials and practicable methodologies for the further developments of glucose sensors have been proposed. Firstly, the atomic deposition of alloys is expected to enhance the selectivity, which is considered to be lacking in non-enzymatic glucose sensing. Secondly, by using the modification of the hydrophilicity of the metallic-oxides, a promoted current response from the electro-oxidation of glucose is expected. Lastly, by taking the advantage of the redistribution phenomenon of the oxide particles, the usage of the noble metals is foreseen to be reduced.

NANO ◽  
2008 ◽  
Vol 03 (06) ◽  
pp. 461-467 ◽  
Author(s):  
JIAN-SHAN YE ◽  
GUANGQUAN MO ◽  
WEI DE ZHANG ◽  
XIAO LIU ◽  
FWU-SHAN SHEU

Multiwalled carbon nanotubes (MWNTs) can be etched at potentials more positive than 1.7 V versus Ag / AgCl (3 M KCl ) in 0.2 M HNO 3. The electrochemically etched MWNTs show an increase in electrochemical impedance and sluggish electron transfer kinetics, and lose the electrocatalytic effects toward the oxidation of glucose, H 2 O 2, uric acid (UA) and L-ascorbic acid (L-AA). Transmission electron microscope (TEM) images reveal that the nanotube tips are cut off by electrochemical oxidation. This may lead to the degradation of electrocatalytic ability in the MWNTs. Furthermore, the current response after different electrochemically etched cycles shows that the electrocatalytic ability of the MWNTs toward different molecules can be tuned by etched cycles. For example, five etched cycles leads to the total disappearance of the oxidative response to L-AA, with the remaining over 50% of the UA current response in the L-AA and UA mixture. Thus, electrochemical etching is a simple yet novel way to tune the electrocatalytic reactivity and improve the selectivity of the MWNTs.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4340
Author(s):  
Han-Wei Chang ◽  
Chia-Wei Su ◽  
Jia-Hao Tian ◽  
Yu-Chen Tsai

Zn-Co-S ball-in-ball hollow sphere (BHS) was successfully prepared by solvothermal sulfurization method. An efficient strategy to synthesize Zn-Co-S BHS consisted of multilevel structures by controlling the ionic exchange reaction was applied to obtain great performance electrode material. Carbon nanotubes (CNTs) as a conductive agent were uniformly introduced with Zn-Co-S BHS to form Zn-Co-S BHS/CNTs and expedited the considerable electrocatalytic behavior toward glucose electro-oxidation in alkaline medium. In this study, characterization with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) was used for investigating the morphological and physical/chemical properties and further evaluating the feasibility of Zn-Co-S BHS/CNTs in non-enzymatic glucose sensing. Electrochemical methods (cyclic voltammetry (CV) and chronoamperometry (CA)) were performed to investigate the glucose sensing performance of Zn-Co-S BHS/CNTs. The synergistic effect of Faradaic redox couple species of Zn-Co-S BHS and unique conductive network of CNTs exhibited excellent electrochemical catalytic ability towards the glucose electro-oxidation, which revealed linear range from 5 to 100 μM with high sensitivity of 2734.4 μA mM−1 cm−2, excellent detection limit of 2.98 μM, and great selectivity in the presence of dopamine, uric acid, ascorbic acid, and fructose. Thus, Zn-Co-S BHS/CNTs would be expected to be a promising material for non-enzymatic glucose sensing.


2012 ◽  
Vol 16 (01) ◽  
pp. 130-139 ◽  
Author(s):  
Samson Khene ◽  
Tebello Nyokong

In this work we report on electrochemical behavior of nickel phthalocyanine derivatives tetrasubstituted peripherally and non-peripherally with hydroxy and used to modify single walled carbon nanotubes. Nickel phthalocyanine complex octasubstituted at the peripheral positions with hydroxy groups was also used to modify single walled carbon nanotubes. Nickel phthalocyanine complex tetrasubstituted with amino groups at peripheral position was covalently and non-covalently linked to single walled carbon nanotubes. All the conjugates of nickel phthalocyanine derivatives with single walled carbon nanotubes were used for the electro oxidation of 4-chlorophenol. The nickel phthalocyanine octabsubstituted with hydroxy groups at the non-peripheral positions gave the best current response and the best resistance against electrode fouling for the oxidation of 4-chlorophenol.


The Analyst ◽  
2019 ◽  
Vol 144 (16) ◽  
pp. 4925-4934 ◽  
Author(s):  
Palanisamy Kannan ◽  
Fangshuai Chen ◽  
Huasheng Jiang ◽  
Hui Wang ◽  
Rongfang Wang ◽  
...  

The electro-oxidation of glucose occurred at the surface of hierarchical core–shell Ni3S2/NiMoO4 nanowires.


1975 ◽  
Vol 28 (11) ◽  
pp. 2377 ◽  
Author(s):  
M Corbett ◽  
BF Hoskins ◽  
NJ McLeod ◽  
BP O'Day

The crystal and molecular structures have been determined, by single-crystal X-ray methods, for each of the isomorphous set of divalent binuclear metal derivatives of 1,3-diphenyltriazene, abbreviated as dptH, [M(dpt)2]2 where M = Ni, Pd, and Cu. The crystals are composed of discrete molecular units, of composition M2(dpt)4, which have a syn-syn structure analogous to that of copper(II) acetate monohydrate with pairs of closely separated metal atoms held together by the terminal nitrogen atoms of four ligand groups in such a way that the environment of each metal atom is almost square-planar. The interatomic distances between the pairs of metal atoms, 2.395(3), 2563(1), and 2.441(2) Ǻ for the Ni, Pd, and Cu compounds, are strongly suggestive of metal-metal bonding. The two N4-planes are almost parallel but the two sets of coordinating nitrogen atoms are twisted markedly from the eclipsed configuration, the average angle of rotation being about 15°. Crystals of each complex are triclinic with space group P 1. The unit cell parameters in the order of a, b, c, α, β, and γ are 10.335(3), 15.84(1), 13.546(3)& 100.48(5), 94.47(2), 102.57(3)° for Ni2(dpt)4; 10.486(1), 15.791(2), 13.751(1)Ǻ, 99.48(1), 93.61(1), 104.37(1)° for Pd2(dpt)4; 10.373(3), 15.916(5), 13.612(3) Ǻ, 99.51(2), 94.85(3), 102.33(2)° for Cu2(dpt)4. The structure of the nickel complex was solved by the Patterson-Fourier method and the atomic parameters found for this structure were used as the basis of the structure determinations of the isomorphous copper and palladium compounds. All three structures were refined by a block-diagonal least-squares method using 3300 (photographic data) 4065 (counter) and 2753 (counter) independent non-zero terms for the nickel(II), palladium(II) and copper(II) compounds respectively, converging with R values 0.13 (isotropic), 0.056 (anisotropic) and 0.069 (isotropic) respectively.


2008 ◽  
Vol 23 (5) ◽  
pp. 1457-1465 ◽  
Author(s):  
Jining Xie ◽  
Shouyan Wang ◽  
L. Aryasomayajula ◽  
V.K. Varadan

The effect of nanomaterials in platinum-decorated, multiwalled, carbon nanotube-based electrodes for amperometric glucose sensing was investigated by a comparative study with other carbon material-based electrodes such as graphite, glassy carbon, and multiwalled carbon nanotubes. Scanning and transmission electron microscopy and x-ray diffraction were used to investigate their morphologies and crystallinities. Electrochemical impedance spectroscopy was conducted to compare the electrochemical characteristics of these electrodes. The glucose-sensing results from the chronoamperometric measurements indicated that carbon nanotubes improve the linearity of the current response to glucose concentrations over a wide range, and that platinum decoration of the carbon nanotubes produces improved electrochemical performance with a higher sensitivity.


Sign in / Sign up

Export Citation Format

Share Document