scholarly journals Comparative Study of Optimal Multivariable LQR and MPC Controllers for Unmanned Combat Air Systems in Trajectory Tracking

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 331
Author(s):  
Alvaro Ortiz ◽  
Sergio Garcia-Nieto ◽  
Raul Simarro

Guidance, navigation, and control system design is, undoubtedly, one of the most relevant issues in any type of unmanned aerial vehicle, especially in the case of military missions. This task needs to be performed in the most efficient way possible, which involves trying to satisfy a set of requirements that are sometimes in opposition. The purpose of this article was to compare two different control strategies in conjunction with a path-planning and guidance system with the objective of completing military missions in the most satisfactory way. For this purpose, a novel dynamic trajectory-planning algorithm is employed, which can obtain an appropriate trajectory by analyzing the environment as a discrete 3D adaptive mesh and performs a softening process a posteriori. Moreover, two multivariable control techniques are proposed, i.e., the linear quadratic regulator and the model predictive control, which were designed to offer optimal responses in terms of stability and robustness.

2018 ◽  
Vol 90 (5) ◽  
pp. 858-868 ◽  
Author(s):  
Muhammad Taimoor ◽  
Li Aijun ◽  
Rooh ul Amin ◽  
Hongshi Lu

Purpose The purpose of this paper is to design linear quadratic regulator (LQR) based Luenberger observer for the estimation of unknown states of aircraft. Design/methodology/approach In this paper, the LQR-based Luenberger observer is deliberated for autonomous level flight of unmanned aerial vehicle (UAV) which has been attained productively. Various modes like phugoid and roll modes are exploited for controlling the rates of UAV. The Luenberger observer is exploited for estimation of the mysterious states of the system. The rates of roll, yaw and pitch are used as an input to the observer, while the remaining states such as velocities and angles have been anticipated. The main advantage of using Luenberger observer was to reduce the cost of the system which has been achieved lucratively. The Luenberger observer proposes sturdiness at the rate of completion to conquest over the turmoil and insecurities to overcome the privileged recital. The FlightGear simulator is exploited for the endorsement of the recital of the Luenberger observer-based autopilot. The level flight has been subjugated lucratively and has been legitimated by exploiting the FlightGear simulator. The authenticated and the validated results are offered in this paper. Microsoft Visual Studio has been engaged as a medium between the MATLAB and FlightGear Simulator. Findings The suggested observer based on LQR ensures the lucrative approximation of the unknown states of the system as well as the successful level flight of the system. The Luenberger observer is used for approximation of states while LQR is used as controller. Originality/value In this research work, not only the estimation of unknown states of both longitudinal and lateral model is made but also the level flight is achieved by using those estimated states and the autopilot is validated by using the FlightGear, while in most of the research work only the estimation is made of only longitudinal or lateral model.


2016 ◽  
Vol 6 (2) ◽  
pp. 11 ◽  
Author(s):  
Khaled M Goher

<p class="1Body">This paper presents mathematical modelling and control of a two-wheeled single-seat vehicle. The design of the vehicle is inspired by the Personal Urban Mobility and Accessibility (PUMA) vehicle developed by General Motors® in collaboration with Segway®. The body of the vehicle is designed to have two main parts. The vehicle is activated using three motors; a linear motor to activate the upper part in a sliding mode and two DC motors activating the vehicle while moving forward/backward and/or manoeuvring. Two stages proportional-integral-derivative (PID) control schemes are designed and implemented on the system models. The state space model of the vehicle is derived from the linearized equations. Controller based on the Linear Quadratic Regulator (LQR) and the pole placement techniques are developed and implemented. Further investigation of the robustness of the developed LQR and the pole placement techniques is emphasized through various experiments using an applied impact load on the vehicle.</p>


2011 ◽  
Vol 403-408 ◽  
pp. 3758-3762
Author(s):  
Subhajit Patra ◽  
Prabirkumar Saha

In this paper, two efficient control algorithms are discussed viz., Linear Quadratic Regulator (LQR) and Dynamic Matrix Controller (DMC) and their applicability has been demonstrated through case study with a complex interacting process viz., a laboratory based four tank liquid storage system. The process has Two Input Two Output (TITO) structure and is available for experimental study. A mathematical model of the process has been developed using first principles. Model parameters have been estimated through the experimentation results. The performance of the controllers (LQR and DMC) has been compared to that of industrially more accepted PID controller.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Oscar Andrew Zongo ◽  
Anant Oonsivilai

This paper presents a comparison between a proportional-integral controller, low pass filters, and the linear quadratic regulator in dealing with the task of eliminating harmonic currents in the grid-connected photovoltaic system. A brief review of the existing methods applied to mitigate harmonic currents is presented. The Perturb & Observe technique was employed for maximum power point tracking. The PI control, low pass filters, and the linear quadratic regulator are discussed in detail in terms of their control strategies. The grid current was analyzed in the system with all three of the controllers applied to control the voltage source inverter of the solar photovoltaic system connected to the grid through an L filter and LCL filter and simulated in MATLAB/SIMULINK. The simulation results obtained have proven the robustness of the linear quadratic regulator over other methods. The technique lowers the grid current total harmonic distortion from 7.85% to 2.13%.


Author(s):  
Kevin M. Farinholt ◽  
Donald J. Leo

Abstract An investigation of the natural frequencies and mode shapes associated with sealed conical bores having actuating boundary conditions is presented. Beginning with the one dimensional wave equation for spherically expanding waves, modal characteristics are developed as functions of cone geometry and actuator parameters. This paper presents both analytical and experimental comparisons for the purpose of validating model and development techniques. An investigation of the orthogonality and adjointness of the solution is presented. A discussion of incorporating driving forces in the system model for the purpose of coupling control actuators with internal acoustics is also included. Including these driving forces, a state space model of the system is developed for the purpose of applying modern feedback control. This paper concludes with a study on applying Linear Quadratic Regulator techniques to this system, relating tradeoffs between spatially averaged pressure and control voltages. The results of our simulations indicate that pressure reductions of 30% are attainable with average control voltages of 14.4 volts, given an example geometry.


Author(s):  
Dechrit Maneetham ◽  
Petrus Sutyasadi

This research proposes control method to balance and stabilize an inverted pendulum. A robust control was analyzed and adjusted to the model output with real time feedback. The feedback was obtained using state space equation of the feedback controller. A linear quadratic regulator (LQR) model tuning and control was applied to the inverted pendulum using internet of things (IoT). The system's conditions and performance could be monitored and controlled via personal computer (PC) and mobile phone. Finally, the inverted pendulum was able to be controlled using the LQR controller and the IoT communication developed will monitor to check the all conditions and performance results as well as help the inverted pendulum improved various operations of IoT control is discussed.


2011 ◽  
Vol 63-64 ◽  
pp. 533-536
Author(s):  
Xiao Jun Xing ◽  
Jian Guo Yan

With the purpose of overcoming the defect that unmanned air vehicles (UAVs) are easily disturbed by air current and tend to be unstable, an augmented-stability controller was developed for a certain UAV’s longitudinal motion. According to requirements of short-period damping ratio and control anticipation parameter (CAP) in flight quality specifications of GJB185-86 and C*, linear quadratic regulator (LQR) theory was used in the augmented-stability controller’s design. The simulation results show that the augmented-stability controller not only improves the UAV’s stability and dynamic characteristics but also enhances the UAV’s robustness.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mingying Huo ◽  
He Liao ◽  
Yanfang Liu ◽  
Naiming Qi

Displaced solar orbits for spacecraft propelled by electric sails are investigated. Since the propulsive thrust is induced by the sail attitude, the orbital and attitude dynamics of electric-sail-based spacecraft are coupled and required to be investigated together. However, the coupled dynamics and control of electric sails have not been discussed in most published literatures. In this paper, the equilibrium point of the coupled dynamical system in displaced orbit is obtained, and its stability is analyzed through a linearization. The results of stability analysis show that only some of the orbits are marginally stable. For unstable displaced orbits, linear quadratic regulator is employed to control the coupled attitude-orbit system. Numerical simulations show that the proposed strategy can control the coupled system and a small torque can stabilize both the attitude and orbit. In order to generate the control force and torque, the voltage distribution problem is studied in an optimal framework. The numerical results show that the control force and torque of electric sail can be realized by adjusting the voltage distribution of charged tethers.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Matteo Dentis ◽  
Elisa Capello ◽  
Giorgio Guglieri

The purpose of this paper is the design of guidance and control algorithms for orbital space maneuvers. A 6-dof orbital simulator, based on Clohessy-Wiltshire-Hill equations, is developed in C language, considering cold gas reaction thrusters and reaction wheels as actuation system. The computational limitations of on-board computers are also included. A combination of guidance and control algorithms for an orbital maneuver is proposed: (i) a suitably designed Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) algorithm is adopted for the guidance and (ii) a linear quadratic regulator (LQR) is used for the attitude control. The proposed approach is verified for different cases, including external environment disturbances and errors on the actuation system.


1991 ◽  
Vol 113 (4) ◽  
pp. 612-619 ◽  
Author(s):  
Luen-Woei Liou ◽  
Asok Ray

A state feedback control law has been derived in Part I [1] of this two-part paper on the basis of an augmented plant model [2, 3, 4] that accounts for the randomly varying delays induced by the network in Integrated Communication and Control Systems (ICCS). The control algorithm was formulated as a linear quadratic regulator problem and then solved using the principle of dynamic programming and optimality. This paper, which is the second of two parts, presents (i) a numerical procedure for synthesizing the control parameters and (ii) results of simulation experiments for verification of the above control law using the flight dynamic model of an advanced aircraft. This two-part paper is concluded with recommendations for future work.


Sign in / Sign up

Export Citation Format

Share Document