scholarly journals CIRO: The Effects of Visually Diminished Real Objects on Human Perception in Handheld Augmented Reality

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 900
Author(s):  
Hanseob Kim ◽  
Taehyung Kim ◽  
Myungho Lee ◽  
Gerard Jounghyun Kim ◽  
Jae-In Hwang

Augmented reality (AR) scenes often inadvertently contain real world objects that are not relevant to the main AR content, such as arbitrary passersby on the street. We refer to these real-world objects as content-irrelevant real objects (CIROs). CIROs may distract users from focusing on the AR content and bring about perceptual issues (e.g., depth distortion or physicality conflict). In a prior work, we carried out a comparative experiment investigating the effects on user perception of the AR content by the degree of the visual diminishment of such a CIRO. Our findings revealed that the diminished representation had positive impacts on human perception, such as reducing the distraction and increasing the presence of the AR objects in the real environment. However, in that work, the ground truth test was staged with perfect and artifact-free diminishment. In this work, we applied an actual real-time object diminishment algorithm on the handheld AR platform, which cannot be completely artifact-free in practice, and evaluated its performance both objectively and subjectively. We found that the imperfect diminishment and visual artifacts can negatively affect the subjective user experience.

2018 ◽  
Author(s):  
Uri Korisky ◽  
Rony Hirschhorn ◽  
Liad Mudrik

Notice: a peer-reviewed version of this preprint has been published in Behavior Research Methods and is available freely at http://link.springer.com/article/10.3758/s13428-018-1162-0Continuous Flash Suppression (CFS) is a popular method for suppressing visual stimuli from awareness for relatively long periods. Thus far, it has only been used for suppressing two-dimensional images presented on-screen. We present a novel variant of CFS, termed ‘real-life CFS’, with which the actual immediate surroundings of an observer – including three-dimensional, real life objects – can be rendered unconscious. Real-life CFS uses augmented reality goggles to present subjects with CFS masks to their dominant eye, leaving their non-dominant eye exposed to the real world. In three experiments we demonstrate that real objects can indeed be suppressed from awareness using real-life CFS, and that duration suppression is comparable that obtained using the classic, on-screen CFS. We further provide an example for an experimental code, which can be modified for future studies using ‘real-life CFS’. This opens the gate for new questions in the study of consciousness and its functions.


Author(s):  
Paul Milgram ◽  
David Drascic

The concept of Augmented Reality (AR) displays is defined, in relation to the amount of real (unmodelled) and virtual (modelled) data presented in an image, as those displays in which real images, such as video, are enhanced with computer generated graphics. For the important class of stereoscopic AR displays, several factors may cause potential perceptual ambiguities, however, which manifest themselves in terms of decreased accuracy and precision whenever virtual objects must be aligned with real ones. A review is given of research conducted to assess both the magnitude of these perceptual effects and the effectiveness of a computer assisted Virtual Tape Measure (VTM), which has been developed for performing quantitative 3D measurements on real-world stereo images.


2021 ◽  
Author(s):  
Ezgi Pelin Yildiz

Augmented reality is defined as the technology in which virtual objects are blended with the real world and also interact with each other. Although augmented reality applications are used in many areas, the most important of these areas is the field of education. AR technology allows the combination of real objects and virtual information in order to increase students’ interaction with physical environments and facilitate their learning. Developing technology enables students to learn complex topics in a fun and easy way through virtual reality devices. Students interact with objects in the virtual environment and can learn more about it. For example; by organizing digital tours to a museum or zoo in a completely different country, lessons can be taught in the company of a teacher as if they were there at that moment. In the light of all these, this study is a compilation study. In this context, augmented reality technologies were introduced and attention was drawn to their use in different fields of education with their examples. As a suggestion at the end of the study, it was emphasized that the prepared sections should be carefully read by the educators and put into practice in their lessons. In addition it was also pointed out that it should be preferred in order to communicate effectively with students by interacting in real time, especially during the pandemic process.


Author(s):  
Alvebi Hopaliki ◽  
Yupianti Yupianti ◽  
Juju Jumadi

Augmented Reality (AR) is a variation of the virtual environment or more often calledasAR technology users that can see the real world, with virtual objects added to the real world. So, users see virtual objects and real objects are in the sum place. Augmented reality requires streaming video with a camera that is used as a sowce of image input, then tracking and detecting markers. After the W is detected 30 model will appear of an item. This 3D model was mated mite software for 3D design, jbr example 3DS Max. Blender and others In this ancient animal Ieaming media using pattern recognition that can be interment! as taking raw data and based on data classification Then it can take the mutation problem how to design 30 objects with the Blender application to introduce d anc‘ient animals. purpose of this m is to build ancient animal leaning media in real time by using augmented reality technology.


Frameless ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 37-38
Author(s):  
Michael J. Murdoch ◽  
◽  
Nargess Hassani ◽  
Sara Leary ◽  
◽  
...  

This presentation will summarize recent work on the visual perception of color appearance and object properties in optical see-through (OST) augmented reality (AR) systems. OST systems, such as Microsoft HoloLens, use a see- through display system to superimpose virtual content onto a user’s view of the real world. With careful tracking of both display and world coordinates, synthetic objects can be added to the real world, and real objects can be manipulated via synthetic overlays. Ongoing research studies how the combination of real and virtual stimuli are perceived and how users’ visual adaptation is affected; two specific examples will be explained.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-9
Author(s):  
Aulia Sari Prihatini ◽  
Mahrizal Masri ◽  
Mhd. Zulfansyuri Siambaton

Reality Increasing or often also called AR (Augmented Reality) in English, is a technology that can add two-dimensional or three-dimensional illusions of objects together into a 3D into the real world then project illusion objects into real time. Unlike the illusion of reality where in the real world is completely replaced, reality only adds to or completes reality. Augmented Reality unites real objects and illusions into real circles, works interactively in real time and found integration between objects in 3D and good integration requires effective investigation. Web AR provides Web-based access using Augmented Reality through a web browser using a combination of technologies including WebRTC, WebGL, WebVR, and Modern APLs sensors. Catalogs are publicity tools used by companies as a way to promote their products and services. Examples of companies that use catalogs are Furniture stores that promote products. Here it will be visualized into 3D until it looks more clear and attractive to consumers. So, based on the description above, the author takes the title "Implementation of Augmented Reality with Marker Method as Media Catalog in AR-Based Furniture Stores. Keywords: Augmented Reality, WEB AR, catalog


2020 ◽  
Vol 10 (2) ◽  
pp. 600
Author(s):  
Manuel Alonso-Rosa ◽  
Aurora Gil-de-Castro ◽  
Antonio Moreno-Munoz ◽  
Joaquín Garrido-Zafra ◽  
Elena Gutierrez-Ballesteros ◽  
...  

Augmented reality (AR) improves how we acquire, understand, and display information without distracting us from the real world. These technologies can be used in different applications and industries as they can incorporate domain-specific visualizations on a real-world screen. Mobile augmented reality (MAR) essentially consists of superimposing virtual elements over real objects on the screen, to give added value and enrich the interaction with reality. In numerous plants, it is being used for maintenance and repair tasks, as well as training. The Internet of Things (IoT) is increasingly pervading every aspect of our lives, including the power infrastructure of our buildings. IoT-enabled devices offer many connectivity options for helping supervise all-important energy assets. Aggregating data to cloud-based platforms enables operations teams to have on-time information access to make fast decisions and have a fast response regarding energy use, while maintenance teams keep on top of the appliance power quality and reliability needed by using MAR. This paper presents a novel approximation for visualizing appliance-related power quality to enhance awareness about the consumed electricity. A combined solution of MAR with IoT technologies is employed. Engineered solutions’ hands-free way to get data about surrounding appliances reduces the complexity, saves energy, and speeds up the operations. An innovative way to measure things at the right time leads to a competitive advantage.


2021 ◽  
Author(s):  
Markus Miller ◽  
Alfred Nischwitz ◽  
Rüdiger Westermann

In augmented reality applications, consistent illumination between virtual and real objects is important for creating an immersive user experience. Consistent illumination can be achieved by appropriate parameterisation of the virtual illumination model, that is consistent with real-world lighting conditions. In this study, we developed a method to reconstruct the general light direction from red-green-blue (RGB) images of real-world scenes using a modified VGG-16 neural network. We reconstructed the general light direction as azimuth and elevation angles. To avoid inaccurate results caused by coordinate uncertainty occurring at steep elevation angles, we further introduced stereographically projected coordinates. Unlike recent deep-learning-based approaches for reconstructing the light source direction, our approach does not require depth information and thus does not rely on special red-green-blue- depth (RGB-D) images as input.


2012 ◽  
Author(s):  
R. A. Grier ◽  
H. Thiruvengada ◽  
S. R. Ellis ◽  
P. Havig ◽  
K. S. Hale ◽  
...  

2019 ◽  
Vol 2019 (1) ◽  
pp. 237-242
Author(s):  
Siyuan Chen ◽  
Minchen Wei

Color appearance models have been extensively studied for characterizing and predicting the perceived color appearance of physical color stimuli under different viewing conditions. These stimuli are either surface colors reflecting illumination or self-luminous emitting radiations. With the rapid development of augmented reality (AR) and mixed reality (MR), it is critically important to understand how the color appearance of the objects that are produced by AR and MR are perceived, especially when these objects are overlaid on the real world. In this study, nine lighting conditions, with different correlated color temperature (CCT) levels and light levels, were created in a real-world environment. Under each lighting condition, human observers adjusted the color appearance of a virtual stimulus, which was overlaid on a real-world luminous environment, until it appeared the whitest. It was found that the CCT and light level of the real-world environment significantly affected the color appearance of the white stimulus, especially when the light level was high. Moreover, a lower degree of chromatic adaptation was found for viewing the virtual stimulus that was overlaid on the real world.


Sign in / Sign up

Export Citation Format

Share Document