scholarly journals Design and Passive Training Control of Elbow Rehabilitation Robot

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1147
Author(s):  
Xiaohong Cui ◽  
Binrui Wang ◽  
Han Lu ◽  
Jiayu Chen

In this paper, a rehabilitation robot driven by multifilament muscles is designed based on the rehabilitation robot motion model and a system elbow joint model. The passive training mode of rehabilitation robots were researched, and active disturbance rejection control (ADRC) leveraged to improve the tracking angle of robot joints. In the no-load motion simulation of rehabilitation robots, disturbances are added to the control variables to complete the ADRC and Proportional Integral Differential (PID) position control simulation. The simulation results indicate that the auto disturbance rejection control can quickly keep up the expected signal without overshoot, solve the contradiction between the system rapidity and overshoot. Moreover, it can better suppress the interference even if the external load changes. The upper limbs of the human body are used as the load on the robot body to complete the simulation of ADRC and PID position control objects of different weights. Finally, a passive rehabilitation training experiment was conducted to verify the safety of the rehabilitation robot, the rationality, comfort, and robustness of the mechanism design, and the effectiveness and feasibility of the ADRC.

2014 ◽  
Vol 551 ◽  
pp. 541-547
Author(s):  
He Song Liu ◽  
Yong Ling Fu ◽  
Juan Chen ◽  
Hui Chen

A novel active disturbance rejection control (ADRC) strategy is presented to improve position control performance of airborne direct drive electro-mechanical actuator (EMA). To begin with, kinematics model of the direct drive EMA is deduced for simulation benefits. Then, an ADRC controller is designed to implement the position control. Finally, simulation work is put forward to verify the steady-state precision, dynamic performance and load disturbance rejection ability, accounting for over-running load. The results verify that the ADRC-based EMA servo system is fast, precise, of no overshoot and strongly robust to load disturbance.


Actuators ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 112
Author(s):  
Bin Wang ◽  
Hengyu Ji ◽  
Rui Chang

A compact and flexible hydraulic double-cylinder actuation scheme is proposed for use in applications, especially where power density is extremely demanding. In view of flexible amounting requirements, long and thin hoses were utilized to connect two cylinders. Affecting the actuation preciseness, volume variation of the hoses caused by pressurized oil and bubbles was the main problem the system encountered. In this study, an active disturbance rejection control (ADRC) strategy was adopted for the improvement of displacement control performance under uncertain external load. After the experimental verification of the necessity of a hose model for the system, a centralized-parameter hose model was constructed where the coefficients are determined on the basis of the experimental data. Additionally, the system and the controller proposed were mathematically modeled. Simulation results shows that the system using ADRC exhibited higher displacement accuracy and better dynamic performance than that using PID (Proportion-Integral-Derivative) or fuzzy PID. ADRC has a stronger disturbance rejection ability. ADRC is an effective solution to nonlinear control of systems with uncertain parameters or various loads.


2017 ◽  
Vol 40 (4) ◽  
pp. 1328-1339 ◽  
Author(s):  
Ling Zhao ◽  
Linlin Ge ◽  
Tao Wang

In this paper, position control is addressed for a two-joint robot finger system driven by pneumatic artificial muscles. It is hard to obtain high precision control for a two-joint robot finger system due to coupling and nonlinearities. A two-input and two-output decoupling problem is solved via active disturbance rejection control without complicated calculations. An extended state observer is designed to estimate the nonlinearities. Furthermore, the stability of the two-joint robot finger system is shown by a back-stepping method. Results from experiments are demonstrated to show the effectiveness of the proposed control approach.


Sign in / Sign up

Export Citation Format

Share Document