scholarly journals On 5G-V2X Use Cases and Enabling Technologies: A Comprehensive Survey

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Ahmad Alalewi ◽  
Iyad Dayoub ◽  
Soumaya Cherkaoui
2021 ◽  
Author(s):  
Wei Jiang ◽  
Bin Han ◽  
Mohammad Asif Habibi ◽  
Hans Dieter Schotten

<p>As of today, the fifth generation (5G) mobile communication system has been rolled out in many countries and the number of 5G subscribers already reaches a very large scale. It is time for academia and industry to shift their attention towards the next generation. At this crossroad, an overview of the current state of the art and a vision of future communications are definitely of interest. This article thus aims to provide a comprehensive survey to draw a picture of the sixth generation (6G) system in terms of drivers, use cases, usage scenarios, requirements, key performance indicators (KPIs), and enabling technologies. First, we attempt to answer the question of “Is there any need for 6G?” by shedding light on the key driving factors of 6G, in which we predict the explosive growth of mobile traffic until 2030, and envision potential use cases and usage scenarios. Second, the technical requirements of 6G are discussed and compared with those of 5G with respect to a set of KPIs in a quantitative manner. Third, the state-of-the-art 6G research efforts and activities from representative institutions and countries are summarized, and a tentative roadmap of definition, specification, standardization, and regulation is projected. Then, we identify a dozen of potential technologies and introduce their principles, advantages, challenges, and open research issues. Finally, the conclusions are drawn to paint a picture of “What 6G may look like?”. This survey is intended to serve as an enlightening guideline to spur interests and further investigations for subsequent research and development of 6G communications systems.</p>


Author(s):  
Hamdan Hejazi ◽  
László Bokor

In the past few years, automotive Internet of Things (IoT) solutions have become one of the most significant IoT application areas in the shape of vehicular communication to connect vehicles and such the so-called Internet of Vehicles (IoV) to be used in Intelligent Transportation Systems (ITS) environments. With an increasing level of cooperation, ITS could facilitate smart city operations by providing cooperative intelligent traffic solutions. Modern Cooperative ITS (C-ITS) solutions have started to be implemented in the whole world with various deployment models and significant improvements in the integration of Vehicle-to-Everything (V2X) communication and IoT solutions. To highlight the current V2X technology evolution towards an IoT/IoV era, this paper presents a comprehensive survey about the convergence between IoT and V2X use-cases together with their supporting technologies in the cooperative ITS ecosystem worldwide. We show how IoT could enable advanced V2X applications to get widespread and increase ITS efficiency.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 153479-153507 ◽  
Author(s):  
Cong T. Nguyen ◽  
Yuris Mulya Saputra ◽  
Nguyen Van Huynh ◽  
Ngoc-Tan Nguyen ◽  
Tran Viet Khoa ◽  
...  

Author(s):  
Weifei Hu ◽  
Tongzhou Zhang ◽  
Xiaoyu Deng ◽  
Zhenyu Liu ◽  
Jianrong Tan

Digital twin (DT) is an emerging technology that enables sophisticated interaction between physical objects and their virtual replicas. Although DT has recently gained significant attraction in both industry and academia, there is no systematic understanding of DT from its development history to its different concepts and applications in disparate disciplines. The majority of DT literature focuses on the conceptual development of DT frameworks for a specific implementation area. Hence, this paper provides a state-of-the-art review of DT history, different definitions and models, and six types of key enabling technologies. The review also provides a comprehensive survey of DT applications from two perspectives: (1) applications in four product-lifecycle phases, i.e. product design, manufacturing, operation and maintenance, and recycling and (2) applications in four categorized engineering fields, including aerospace engineering, tunneling and underground engineering, wind engineering and Internet of things (IoT) applications. DT frameworks, characteristic components, key technologies and specific applications are extracted for each DT category in this paper. A comprehensive survey of the DT references reveals the following findings: (1) The majority of existing DT models only involve one-way data transfer from physical entities to virtual models and (2) There is a lack of consideration of the environmental coupling, which results in the inaccurate representation of the virtual components in existing DT models. Thus, this paper highlights the role of environmental factor in DT enabling technologies and in categorized engineering applications. In addition, the review discusses the key challenges and provides future work for constructing DTs of complex engineering systems.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2171
Author(s):  
Vaibhav Fanibhare ◽  
Nurul I. Sarkar ◽  
Adnan Al-Anbuky

The Tactile Internet (TI) is an emerging area of research involving 5G and beyond (B5G) communications to enable real-time interaction of haptic data over the Internet between tactile ends, with audio-visual data as feedback. This emerging TI technology is viewed as the next evolutionary step for the Internet of Things (IoT) and is expected to bring about a massive change in Healthcare 4.0, Industry 4.0 and autonomous vehicles to resolve complicated issues in modern society. This vision of TI makes a dream into a reality. This article aims to provide a comprehensive survey of TI, focussing on design architecture, key application areas, potential enabling technologies, current issues, and challenges to realise it. To illustrate the novelty of our work, we present a brainstorming mind-map of all the topics discussed in this article. We emphasise the design aspects of the TI and discuss the three main sections of the TI, i.e., master, network, and slave sections, with a focus on the proposed application-centric design architecture. With the help of the proposed illustrative diagrams of use cases, we discuss and tabulate the possible applications of the TI with a 5G framework and its requirements. Then, we extensively address the currently identified issues and challenges with promising potential enablers of the TI. Moreover, a comprehensive review focussing on related articles on enabling technologies is explored, including Fifth Generation (5G), Software-Defined Networking (SDN), Network Function Virtualisation (NFV), Cloud/Edge/Fog Computing, Multiple Access, and Network Coding. Finally, we conclude the survey with several research issues that are open for further investigation. Thus, the survey provides insights into the TI that can help network researchers and engineers to contribute further towards developing the next-generation Internet.


Author(s):  
Zoran Bojkovic ◽  
Bojan Bakmaz ◽  
Miodrag Bakmaz

5G mobile systems can be comprehended as highly flexible and programmable E2E networking infrastructures that provide increased performance in terms of capacity, latency, reliability, and energy efficiency while meeting a plethora of diverse requirements from multiple services. Network slicing is emerging as a prospective paradigm to meet these requirements with reduced operating cost and improved time and space functionality. A network slice is the way to provide better resource isolation and increased statistical multiplexing. With dynamic slicing, 5G will operate on flexible zone of the network, permitting varying, adaptable levels or bandwidth and reliability. In this chapter, a comprehensive survey of network slicing is presented from an E2E perspective, detailing its origination and current standardization efforts, principal concepts, enabling technologies, as well as applicable solutions. In particular, it provides specific slicing solutions for each part of the 5G systems, encompassing orchestration and management in the radio access and the core network domains.


Author(s):  
Marek Dudáš ◽  
Steffen Lohmann ◽  
Vojtěch Svátek ◽  
Dmitry Pavlov

AbstractVarious ontology visualization tools using different visualization methods exist and new ones are being developed every year. The goal of this paper is to follow up on previous surveys with an updated classification of ontology visualization methods and a comprehensive survey of available tools. The tools are analyzed for the used visualization methods, interaction techniques and supported ontology constructs. It shows that most of the tools apply two-dimensional node-link visualizations with a focus on class hierarchies. Color and shape are used with little variation, support for constructs introduced with version 2 of the OWL Web Ontology Language is limited, and it often remains vague what tasks and use cases are supported by the visualizations. Major challenges are the limited maturity and usability of many of the tools as well as providing an overview of large ontologies while also showing details on demand. We see a high demand for a universal ontology visualization framework implementing a core set of visual and interactive features that can be extended and customized to respective use cases.


2021 ◽  
Vol 11 (21) ◽  
pp. 10427
Author(s):  
Isiaka A. Alimi ◽  
Romil K. Patel ◽  
Nelson J. Muga ◽  
Armando N. Pinto ◽  
António L. Teixeira ◽  
...  

There has been a growing interconnection across the world owing to various multimedia applications and services. Fixed wireless access (FWA) is an attractive wireless solution for delivering multimedia services to different homes. With the fifth-generation (5G) and beyond mobile networks, the FWA performance can be enhanced significantly. However, their implementation will present different challenges on the transport network due to the incessant increase in the number of required cell-sites and the subsequent increase in the per-site requirements. This paper presents a comprehensive tutorial on the enabling technologies, design considerations, requirements, and prospects of broadband schemes. Furthermore, the related technical challenges of FWA are reviewed, and we proffer potential solutions to address them. Besides, we review various transport network options that can be employed for FWA deployment. In this regard, we offer an in-depth discussion on their related requirements for different use cases. Moreover, we give an insight into the 3GPP RAN functional split implementations and implications on the 5G FWA transport network solutions. The concepts of virtualized RANs for attending flexibly to the dynamic nature of different use cases are also presented.


2021 ◽  
Author(s):  
Wei Jiang ◽  
Bin Han ◽  
Mohammad Asif Habibi ◽  
Hans Dieter Schotten

<p>As of today, the fifth generation (5G) mobile communication system has been rolled out in many countries and the number of 5G subscribers already reaches a very large scale. It is time for academia and industry to shift their attention towards the next generation. At this crossroad, an overview of the current state of the art and a vision of future communications are definitely of interest. This article thus aims to provide a comprehensive survey to draw a picture of the sixth generation (6G) system in terms of drivers, use cases, usage scenarios, requirements, key performance indicators (KPIs), and enabling technologies. First, we attempt to answer the question of “Is there any need for 6G?” by shedding light on the key driving factors of 6G, in which we predict the explosive growth of mobile traffic until 2030, and envision potential use cases and usage scenarios. Second, the technical requirements of 6G are discussed and compared with those of 5G with respect to a set of KPIs in a quantitative manner. Third, the state-of-the-art 6G research efforts and activities from representative institutions and countries are summarized, and a tentative roadmap of definition, specification, standardization, and regulation is projected. Then, we identify a dozen of potential technologies and introduce their principles, advantages, challenges, and open research issues. Finally, the conclusions are drawn to paint a picture of “What 6G may look like?”. This survey is intended to serve as an enlightening guideline to spur interests and further investigations for subsequent research and development of 6G communications systems.</p>


2020 ◽  
Vol 1 (1) ◽  
pp. 4-18
Author(s):  
Danda B. Rawat ◽  
Vijay Chaudhary ◽  
Ronald Doku

Blockchain, also known as a distributed ledger technology, stores different transactions/operations in a chain of blocks in a distributed manner without needing a trusted third-party. Blockchain is proven to be immutable, which helps with integrity and accountability, and, to some extent, confidentiality through a pair of public and private keys. Blockchain has been in the spotlight after successful boom of the Bitcoin. There have been efforts to leverage salient features of Blockchain for different applications and use cases. This paper presents a comprehensive survey of applications and use cases of Blockchain technology for making smart systems secure and trustworthy. Specifically, readers of this paper can have thorough understanding of applications and use cases of Blockchain technology.


Sign in / Sign up

Export Citation Format

Share Document