scholarly journals Self-Interference Cancellation: A Comprehensive Review from Circuits and Fields Perspectives

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 172
Author(s):  
Jiahao Zhang ◽  
Fangmin He ◽  
Wei Li ◽  
Yi Li ◽  
Qing Wang ◽  
...  

Increased demand for higher spectrum efficiency, especially in the space-limited chip, base station, and vehicle environments, has spawned the development of full-duplex communications, which enable the transmitting and receiving to occur simultaneously at the same frequency. The key challenge in this full-duplex communication paradigm is to reduce the self-interference as much as possible, ideally, down to the noise floor. This paper provides a comprehensive review of the self-interference cancellation (SIC) techniques for co-located communication systems from a circuits and fields perspective. The self-interference occurs when the transmitting antenna and the receiving antenna are co-located, which significantly degrade the system performance of the receiver, in terms of the receiver desensitization, signal masking, or even damage of hardwares. By introducing the SIC techniques, the self-interference can be suppressed and the weak desired signal from the remote transmitter can be recovered. This, therefore, enables the full-duplex communications to come into the picture. The SIC techniques are classified into two main categories: the traditional circuit-domain SICs and the novel field-domain SICs, according to the method of how to rebuild and subtract the self-interference signal. In this review paper, the field-domain SIC method is systematically summarized for the first time, including the theoretical analysis and the application remarks. Some typical SIC approaches are presented and the future works are outlooked.

2017 ◽  
Vol 1 (3) ◽  
pp. 72
Author(s):  
Tu Bui-Thi-Minh ◽  
Xung Le ◽  
Vien Nguyen-Duy-Nhat

In this paper, we focus on the precoding design for sum rate maximization while considering the effects of residual SI for point – to-point multiple input/multiple output (MIMO) Full-Duplex systems. The MMSE-based beamforming algorithm was proposed to cancel the SI. The results shown that, the self-interference cancellation is done by matrix precoding at the transmitter if the total number of transmitting antenna of two nodes is greater than the number of receiving antenna of one node. The Bit Error Rate (BER) was also evaluated in the simulation.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


Author(s):  
N. Alivelu Manga

The present-day communication system uses Frequency Division Duplex (FDD) to emulate the benefits of Full Duplex Communication. But it requires more bandwidth as the cost of the spectrum is very high it becomes a major limitation. To overcome this problem implementation of Full Duplex Communication is the best solution. Implementation of full duplex communication is difficult because of a significant problem called self-interference. while transmitting and receiving signals on the same frequency band, receiving signal is interfered with the transmitted signal this phenomenon is called self-interference. The objective of this project is to minimize that self-interference signal from the received signal by using signal processing technique, LMS echo cancellation. Least Mean Square (LMS) echo canceller whose coefficients are updated iteratively is used to cancel the self-interference. An algorithm based on steepest descent method is used to obtain coefficients that change iteratively with varying step size to solve Weiner-Hopfs equation.


2018 ◽  
Vol 17 ◽  
pp. 01003
Author(s):  
Meijing Zhou ◽  
Nan Chen ◽  
Changhua Zhu ◽  
Yunhui Yi

RF imperfections can significantly degrade the performance of full-duplex wireless communication system by introducing non-idealities and random effects, which make it difficult to cancel the self-interference completely. In this paper, we first address the adverse benefits of both the transmitter non-linearity and the IQ imbalance. Then on the basis of these, a joint digital self-interference cancellation scheme is proposed, in which not only the effect of IQ imbalance and power amplifier non-linearity individually, but also the comprehensive function of them are taken into account. Furthermore, the simulation is implemented in the MATLAB platform using standard WiFi 802.11ac PHYs. The results show that the proposed canceller can eliminate more compared with other cancellation schemes, and the overall self-interference attenuation can attain 108dB, which makes the residual self-interference closer to the noise floor.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Pawinee Meerasri ◽  
Peerapong Uthansakul ◽  
Monthippa Uthansakul

The challenge of a full-duplex single-channel system is the method to transmit and receive signals simultaneously at the same time and on the same frequency. Consequently, a critical issue involved in such an operation is the resulting self-interference. Moreover, for MIMO system, the full-duplex single-channel system is subjected to the very strong self-interference signals due to multiple transmitting and receiving antennas. So far in the pieces of literature, there have not been any suitable techniques presented to reduce the self-interference for full-duplex single-channel MIMO systems. This paper initially proposes the method to cancel the self-interference by utilizing the mutual-coupling model for self-interference cancellation. The interference can be eliminated by using a preknown interference, that is, the mutual-coupling signals. The results indicate that the channel capacity performance of the proposed technique can significantly be improved due to the reduction of the self-interference power. The measurement results indicate that the proposed MIMO system can suppress the self-interference and mutual-interference signals with the reduction of 31 dB received power.


Sign in / Sign up

Export Citation Format

Share Document