scholarly journals Easy Fabrication of Performant SWCNT-Si Photodetector

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 271
Author(s):  
Daniele Capista ◽  
Maurizio Passacantando ◽  
Luca Lozzi ◽  
Enver Faella ◽  
Filippo Giubileo ◽  
...  

We propose a simple method to fabricate a photodetector based on the carbon nanotube/silicon nitride/silicon (CNT/Si3N4/Si) heterojunction. The device is obtained by depositing a freestanding single-wall carbon nanotube (SWCNT) film on a silicon substrate using a dry transfer technique. The SWCNT/Si3N4/Si heterojunction is formed without the thermal stress of chemical vapor deposition used for the growth of CNTs in other approaches. The CNT film works as a transparent charge collecting electrode and guarantees a uniform photocurrent across the sensitive area of the device. The obtained photodetector shows a great photocurrent that increases linearly with the incident light intensity and grows with the increasing wavelength in the visible range. The external quantum efficiency is independent of the light intensity and increases with the wavelength, reaching 65% at 640 nm.

Author(s):  
Jowesh Avisheik Goundar ◽  
Takuya Kudo ◽  
Qinqiang Zhang ◽  
Ken Suzuki ◽  
Hideo Miura

Abstract The area-arrayed dumbbell-shape Graphene Nano-Ribbons (GNRs) were fabricated by using chemical vapor deposition and photolithography technologies. The electronic behavior of the fabricated GNR-FET structure was evaluated for its photonic properties with an incident light intensity of 1-mW. The 200-nm wide GNRs structure showed metallic properties, while those with the width of 40 nm showed semiconductive properties as was expected. The light-induced photocurrent was observed in all the fabricated GNRs structures. The average photocurrent observed in the 2-mm wide graphene structure was 3.3 A/m2 and that observed in the 40-nm wide area-arrayed GNRs structure was 261 A/m2, respectively. Based on this photocurrent, the external photosensitivity of the 40-nm wide GNRs structure was about 2.6 × 105 A/W.m2 and this value was much larger than that of conventional Si-base solar cells. In addition, the effect of strain on the resistivity of GNRs was measured. Uniaxial tensile strain was applied to the area-arrayed GNRs structures with the width from 200 nm to 40 nm. The gauge factor obtained from the GNRs with the width wider than 100 nm was about 3, and that with the width of 40 nm was about 160. Therefore, highly-sensitive strain sensors can be realized by using GNRs thinner than 70 nm.


Author(s):  
Alan D. Ansell ◽  
Carmen-Pia Günther ◽  
Michael T. Burrows

Buried individuals of the bivalve Donax vittatus (Bivalvia: Donacidae) respond to change in incident light intensity by adjusting their position in the sediment. Video recordings of activity in aquarium tanks in natural daylight revealed that individuals responded to shading by moving upwards, causing some to partially emerge from the sand. Subsequent removal of the shading stimulated reburial to the normal position. Recordings in laboratory aquaria show similar upward movement and partial emergence occurring when illumination in the visible range is switched off. Upward movement and partial emergence of D. vittatus has also been observed to take place prior to spawning.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuying Yang ◽  
Zhiyan Chen ◽  
Xiangqian Lu ◽  
Xiaotao Hao ◽  
Wei Qin

AbstractThe organic magnetoelectric complexes are beneficial for the development on flexible magnetoelectric devices in the future. In this work, we fabricated all organic multiferroic ferromagnetic/ferroelectric complexes to study magnetoelectric coupling at room temperature. Under the stimulus of external magnetic field, the localization of charge inside organic ferromagnets will be enhanced to affect spin–dipole interaction at organic multiferroic interfaces, where overall ferroelectric polarization is tuned to present an organic magnetoelectric coupling. Moreover, the magnetoelectric coupling of the organic ferromagnetic/ferroelectric complex is tightly dependent on incident light intensity. Decreasing light intensity, the dominated interfacial interaction will switch from spin–dipole to dipole–dipole interaction, which leads to the magnetoelectric coefficient changing from positive to negative in organic multiferroic magnetoelectric complexes.


2021 ◽  
Author(s):  
Xiaoluo Bao ◽  
Xiaokun Wang ◽  
Xiangqing Li ◽  
Lixia Qin ◽  
Taiyang Zhang ◽  
...  

It is necessary for the commercialization of sunlight-driven H2 evolution to develop an efficient photocatalytic system whose energy utilization is independent on incident light intensity. Unfortunately, limited attention has been...


ACS Nano ◽  
2010 ◽  
Vol 4 (12) ◽  
pp. 7337-7343 ◽  
Author(s):  
Ryota Yuge ◽  
Jin Miyawaki ◽  
Toshinari Ichihashi ◽  
Sadanori Kuroshima ◽  
Tsutomu Yoshitake ◽  
...  

2015 ◽  
Vol 3 (31) ◽  
pp. 8074-8079 ◽  
Author(s):  
Changyong Lan ◽  
Chun Li ◽  
Yi Yin ◽  
Huayang Guo ◽  
Shuai Wang

Single-crystalline GeS nanoribbons were synthesized by chemical vapor deposition for the first time. The nanoribbon photodetectors respond to the entire visible incident light with a response edge at around 750 nm and a high responsivity, indicating their promising application for high performance broadband visible-light photo-detection.


Sign in / Sign up

Export Citation Format

Share Document