Synthesis of single-crystalline GeS nanoribbons for high sensitivity visible-light photodetectors

2015 ◽  
Vol 3 (31) ◽  
pp. 8074-8079 ◽  
Author(s):  
Changyong Lan ◽  
Chun Li ◽  
Yi Yin ◽  
Huayang Guo ◽  
Shuai Wang

Single-crystalline GeS nanoribbons were synthesized by chemical vapor deposition for the first time. The nanoribbon photodetectors respond to the entire visible incident light with a response edge at around 750 nm and a high responsivity, indicating their promising application for high performance broadband visible-light photo-detection.

2020 ◽  
Vol 20 (5) ◽  
pp. 3025-3030 ◽  
Author(s):  
Lorenzo Bigiani ◽  
Dario Zappa ◽  
Elisabetta Comini ◽  
Chiara Maccato ◽  
Alberto Gasparotto ◽  
...  

The efficient detection of low-concentration ethylene is a challenging issue of key importance for food quality control end-uses. Herein, we report on the fabrication of MnO2-based nanoarchitectures by a two-step plasma-assisted process, consisting in the initial chemical vapor deposition of MnO2 (host) on polycrystalline Al2O3 substrates and the subsequent functionalization with Ag and Au-based nanoparticles (guest) by sputtering processes. The resulting composites, characterized by a high Ag/Au dispersion and an effective host-guest contact, were tested for the first time as chemoresistive gas sensors for ethylene recognition at low temperatures. The high sensitivity and promising responses, enhanced by metal particle introduction, candidate the target systems as attractive platforms for the eventual monitoring of vegetables/fruits ripening and ageing.


RSC Advances ◽  
2015 ◽  
Vol 5 (117) ◽  
pp. 96412-96415
Author(s):  
Qidong Li ◽  
Yanming Zhao ◽  
Qinghua Fan ◽  
Wei Han

Structurally uniform and well-doped single crystalline solid solution PrxNd1−xB6 nanowires were fabricated by a one-step CVD approach for the first time.


2016 ◽  
Vol 4 (10) ◽  
pp. 3673-3677 ◽  
Author(s):  
Yujie Han ◽  
Xin Yue ◽  
Yanshuo Jin ◽  
Xiangdong Huang ◽  
Pei Kang Shen

Single-crystalline titanium nitride nanowires have been directly synthesized by a novel chemical vapor deposition method and used as efficient catalysts for hydrogen evolution reaction for the first time.


Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 3035-3044 ◽  
Author(s):  
Yifan Xiao ◽  
Long Min ◽  
Xinke Liu ◽  
Wenjun Liu ◽  
Usman Younis ◽  
...  

AbstractThe MoS2 photodetector on different substrates stacked via van der Waals force has been explored extensively because of its great potential in optoelectronics. Here, we integrate multilayer MoS2 on monocrystalline SiC substrate though direct chemical vapor deposition. The MoS2 film on SiC substrate shows high quality and thermal stability, in which the full width at half-maximum and first-order temperature coefficient for the $E_{2g}^1$ Raman mode are 4.6 cm−1 and −0.01382 cm−1/K, respectively. The fabricated photodetector exhibits excellent performance in the UV and visible regions, including an extremely low dark current of ~1 nA at a bias of 20 V and a low noise equivalent of 10−13–10−15 W/Hz1/2. The maximum responsivity of the MoS2/SiC photodetector is 5.7 A/W with the incident light power of 4.35 μW at 365 nm (UV light). Furthermore, the maximum photoconductive gain, noise equivalent power, and normalized detectivity for the fabricated detector under 365 nm illumination are 79.8, 7.08 × 10−15 W/Hz1/2, and 3.07 × 1010 Jonesat, respectively. We thus demonstrate the possibility for integrating high-performance photodetectors array based on MoS2/SiC via direct chemical vapor growth.


Author(s):  
zhikun zhang ◽  
lianlian xia ◽  
Lizhao Liu ◽  
Yuwen Chen ◽  
zuozhi wang ◽  
...  

Large surface roughness, especially caused by the large particles generated during both the transfer and the doping processes of graphene grown by chemical vapor deposition (CVD) is always a critical...


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 267
Author(s):  
Minyu Bai ◽  
Zhuoman Wang ◽  
Jijie Zhao ◽  
Shuai Wen ◽  
Peiru Zhang ◽  
...  

Weak absorption remains a vital factor that limits the application of two-dimensional (2D) materials due to the atomic thickness of those materials. In this work, a direct chemical vapor deposition (CVD) process was applied to achieve 2D MoS2 encapsulation onto the silicon nanopillar array substrate (NPAS). Single-layer 2D MoS2 monocrystal sheets were obtained, and the percentage of the encapsulated surface of NPAS was up to 80%. The reflection and transmittance of incident light of our 2D MoS2-encapsulated silicon substrate within visible to shortwave infrared were significantly reduced compared with the counterpart planar silicon substrate, leading to effective light trapping in NPAS. The proposed method provides a method of conformal deposition upon NPAS that combines the advantages of both 2D MoS2 and its substrate. Furthermore, the method is feasible and low-cost, providing a promising process for high-performance optoelectronic device development.


2015 ◽  
Vol 27 (48) ◽  
pp. 8119-8119 ◽  
Author(s):  
Xing Zhou ◽  
Lin Gan ◽  
Wenming Tian ◽  
Qi Zhang ◽  
Shengye Jin ◽  
...  

1987 ◽  
Vol 102 ◽  
Author(s):  
P.-Y. Lu ◽  
L. M. Williams ◽  
C.-H. Wang ◽  
S. N. G. Chu ◽  
M. H. Ross

ABSTRACTTwo low temperature metalorganic chemical vapor deposition growth techniques, the pre-cracking method and the plasma enhanced method, will be discussed. The pre-cracking technique enables one to grow high quality epitaxial Hg1−xCdxTe on CdTe or CdZnTe substrates at temperatures around 200–250°C. HgTe-CdTe superlattices with sharp interfaces have also been fabricated. Furthermore, for the first time, we have demonstrated that ternary Hg1−xCdTe compounds and HgTe-CdTe superlattices can be successfully grown by the plasma enhanced process at temperatures as low as 135 to 150°C. Material properties such as surface morphology, infrared transmission, Hall mobility, and interface sharpness will be presented.


Sign in / Sign up

Export Citation Format

Share Document