scholarly journals Solid State Transformers Topologies, Controllers, and Applications: State-of-the-Art Literature Review

Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 298 ◽  
Author(s):  
Ahmed Abu-Siada ◽  
Jad Budiri ◽  
Ahmed Abdou

With the global trend to produce clean electrical energy, the penetration of renewable energy sources in existing electricity infrastructure is expected to increase significantly within the next few years. The solid state transformer (SST) is expected to play an essential role in future smart grid topologies. Unlike traditional magnetic transformer, SST is flexible enough to be of modular construction, enabling bi-directional power flow and can be employed for AC and DC grids. Moreover, SSTs can control the voltage level and modulate both active and reactive power at the point of common coupling without the need to external flexible AC transmission system device as per the current practice in conventional electricity grids. The rapid advancement in power semiconductors switching speed and power handling capacity will soon allow for the commercialisation of grid-rated SSTs. This paper is aimed at introducing a state-of-the-art review for SST proposed topologies, controllers, and applications. Additionally, strengths, weaknesses, opportunities, and threats (SWOT) analysis along with a brief review of market drivers for prospective commercialisation are elaborated.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4270
Author(s):  
Gianpiero Colangelo ◽  
Gianluigi Spirto ◽  
Marco Milanese ◽  
Arturo de Risi

In the last years, a change in the power generation paradigm has been promoted by the increasing use of renewable energy sources combined with the need to reduce CO2 emissions. Small and distributed power generators are preferred to the classical centralized and sizeable ones. Accordingly, this fact led to a new way to think and design distributions grids. One of the challenges is to handle bidirectional power flow at the distribution substations transformer from and to the national transportation grid. The aim of this paper is to review and analyze the different mathematical methods to design the architecture of a distribution grid and the state of the art of the technologies used to produce and eventually store or convert, in different energy carriers, electricity produced by renewable energy sources, coping with the aleatory of these sources.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2554 ◽  
Author(s):  
Panos Kotsampopoulos ◽  
Pavlos Georgilakis ◽  
Dimitris T. Lagos ◽  
Vasilis Kleftakis ◽  
Nikos Hatziargyriou

The role of flexible alternating current transmission systems (FACTSs) in the provision of grid services is becoming increasingly important, due to the massive integration of intermittent renewable energy sources, energy storage systems, and the decommissioning of thermal plants. A comprehensive literature review of grid services offered by FACTS is performed, focusing on the different grid services that they can provide, such as power flow control, reactive power control, voltage control, power quality improvement, harmonic mitigation, improvement of transient stability, and damping of inter-area and intra-area oscillations. These grid services need to be realistically and economically validated in suitable testing environments. A review of relevant standards, guides, and the literature is performed, which covers the entire range from functional specification and factory testing up to the field testing of FACTS. Advanced industry practices, such as controller hardware in the loop (CHIL) testing of FACTS controllers by the manufacturer, and recent trends, such as CHIL testing of replica controllers by the owner, are underlined. Limitations of conventional testing and CHIL testing are explained and the use of power hardware in the loop (PHIL) simulation for FACTS testing is discussed. CHIL and scaled-down PHIL tests on a transmission static synchronous compensator (STATCOM) are performed and a comparison of the results is presented.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 972 ◽  
Author(s):  
Fermín Barrero-González ◽  
Victor Pires ◽  
José Sousa ◽  
João Martins ◽  
María Milanés-Montero ◽  
...  

The proliferation of residential photovoltaic (PV) prosumers leads to detrimental impacts on the low-voltage (LV) distribution network operation such as reverse power flow, voltage fluctuations and voltage imbalances. This is due to the fact that the strategies for the PV inverters are usually designed to obtain the maximum energy from the panels. The most recent approach to these issues involves new inverter-based solutions. This paper proposes a novel comprehensive control strategy for the power electronic converters associated with PV installations to improve the operational performance of a four-wire LV distribution network. The objectives are to try to balance the currents demanded by consumers and to compensate the reactive power demanded by them at the expense of the remaining converters’ capacity. The strategy is implemented in each consumer installation, constituting a decentralized or distributed control and allowing its practical implementation based on local measurements. The algorithms were tested, in a yearly simulation horizon, on a typical Portuguese LV network to verify the impact of the high integration of the renewable energy sources in the network and the effectiveness and applicability of the proposed approach.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4028 ◽  
Author(s):  
Abreu ◽  
Soares ◽  
Carvalho ◽  
Morais ◽  
Simão ◽  
...  

Challenges in the coordination between the transmission system operator (TSO) and the distribution system operator (DSO) have risen continuously with the integration of distributed energy resources (DER). These technologies have the possibility to provide reactive power support for system operators. Considering the Portuguese reactive power policy as an example of the regulatory framework, this paper proposes a methodology for proactive reactive power management of the DSO using the renewable energy sources (RES) considering forecast uncertainty available in the distribution system. The proposed method applies a stochastic sequential alternative current (AC)-optimal power flow (SOPF) that returns trustworthy solutions for the DSO and optimizes the use of reactive power between the DSO and DER. The method is validated using a 37-bus distribution network considering real data. Results proved that the method improves the reactive power management by taking advantage of the full capabilities of the DER and by reducing the injection of reactive power by the TSO in the distribution network and, therefore, reducing losses.


2018 ◽  
Vol 8 (11) ◽  
pp. 2019 ◽  
Author(s):  
Qingsong Wang ◽  
Panhong Chen ◽  
Fujin Deng ◽  
Ming Cheng ◽  
Giuseppe Buja

The concept of electric springs (ESs) has been proposed as a new solution for stabilizing power grid fed by intermittent renewable energy sources. With a battery or active power source (DC, on the inside), the ESs can provide both active and reactive power compensations. So far, three typical topologies of single-phase ESs have been reported. Unlike traditional devices where power generation follows the load demand, the ESs are associated with non-critical loads form the so-called smart loads that transfer the fluctuated power to the non-critical loads, adaptively, according to the intermittent nature of power generation. After reviewing the main control strategies of single-phase ESs, the paper analyzes their advantages and disadvantages as well as their suitable applications. Comparisons among different control strategies on a specific topology version are implemented. Finally, conclusions and possible future trends are pointed out.


2020 ◽  
Vol 39 (1) ◽  
pp. 228-237
Author(s):  
I.B. Anichebe ◽  
A.O. Ekwue

Frequent blackouts and unstable supply of electricity show that the  voltage instability problem has been one of the major challenges facing the power system network in Nigeria. This study investigates the voltage stability analysis of the Nigerian power network in the presence of renewable energy sources; FACTS device is used as a voltage controller. A 330kV, 28-bus power system network was studied using the PSS/E software-based Newton-Raphson load-flow technique. The results show that 10 out of the 28 buses had voltages lying below the statutory limit of 0.95 ≤ 1.05 p.u. The application of STATCOM and DFIG devices on two of the weakest buses restored the voltages to acceptable statutory limits. The total active and reactive power losses were reduced to 18.76% and 18.82% respectively. Keywords: Voltage stability analysis; Integration of renewable energy sources; FACTS controllers, Reactive Power, Power Flow.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jalpa Jobanputra ◽  
Chetan Kotwal

AbstractIn a deregulated electrical energy system with increasing penetration of renewable energy sources, rescheduling of the power generation(s) is required, and it is going to congest some of the power lines in the complex power system. The power flow can be managed using different compensating techniques. This study presents power flow management analysis using selected compensation technologies (i.e. series, shunt, series-shunt, and D-FACTS) for congestion alleviation. In this work, an IEEE 6 bus distributed network is used and the mentioned compensating techniques are evaluated for congestion management considering a case of power line outage. It is observed some of the power lines are overloaded by 10%. To reduce the overloading; the series, shunt, series-shunt, D-FACTS compensation technologies are used and found that they can reduce the active power overloading of the congested line by 27%, 9.5%, 12%, and 27% respectively. But the apparent power congestions can be reduced using series and D-FACTS techniques by 14% compare to shunt and series-shunt techniques. It is affirmed that the D-FACTS can effectively manage the power flow compare to other compensation techniques and can offer other benefits (e.g. voltage quality, line power flows, injection of power at the buses, reduction in power losses, etc.).


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1319
Author(s):  
Ehsan Naderi ◽  
Hossein Narimani ◽  
Mahdi Pourakbari-Kasmaei ◽  
Fernando V. Cerna ◽  
Mousa Marzband ◽  
...  

Optimal power flow (OPF), a mathematical programming problem extending power flow relationships, is one of the essential tools in the operation and control of power grids. To name but a few, the primary goals of OPF are to meet system demand at minimum production cost, minimum emission, and minimum voltage deviation. Being at the heart of power system problems for half a century, the OPF can be split into two significant categories, namely optimal active power flow (OAPF) and optimal reactive power flow (ORPF). The OPF is spontaneously a complicated non-linear and non-convex problem; however, it becomes more complex by considering different constraints and restrictions having to do with real power grids. Furthermore, power system operators in the modern-day power networks implement new limitations to the problem. Consequently, the OPF problem becomes more and more complex which can exacerbate the situation from mathematical and computational standpoints. Thus, it is crucially important to decipher the most appropriate methods to solve different types of OPF problems. Although a copious number of mathematical-based methods have been employed to handle the problem over the years, there exist some counterpoints, which prevent them from being a universal solver for different versions of the OPF problem. To address such issues, innovative alternatives, namely heuristic algorithms, have been introduced by many researchers. Inasmuch as these state-of-the-art algorithms show a significant degree of convenience in dealing with a variety of optimization problems irrespective of their complexities, they have been under the spotlight for more than a decade. This paper provides an extensive review of the latest applications of heuristic-based optimization algorithms so as to solve different versions of the OPF problem. In addition, a comprehensive review of the available methods from various dimensions is presented. Reviewing about 200 works is the most significant characteristic of this paper that adds significant value to its exhaustiveness.


2021 ◽  
Vol 266 ◽  
pp. 04010
Author(s):  
A. V. Manin ◽  
D. B. Vayner

The compensating devices are controlled in the structure of the automatic control system in conjunction with the sensors included in a particular node of the power grid. But the overall state of the local power grid for the reactive power flow is not considered. It is proposed to generate control signals to correction devices by processing the information obtained by monitoring from remote sensors of voltage and current of the distribution grid. It is possible to use the matrix method of forming the control signals to correction devices to adjust the grid parameters. To improve the energy efficiency of correction devices in the monitoring structure, it is proposed to use static reactive power compensators (SVCs) based on magneto-valve elements. The proposed distribution grid monitoring structure with the transfer of information over a local area network from sensors to correction devices makes it possible to stabilize the required grid parameters among consumers and minimize the loss of electrical energy from reactive power flow.


Sign in / Sign up

Export Citation Format

Share Document