scholarly journals Vehicle Sideslip Angle Estimation Based on Tire Model Adaptation

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 199 ◽  
Author(s):  
Kanwar Bharat Singh

Information about the vehicle sideslip angle is crucial for the successful implementation of advanced stability control systems. In production vehicles, sideslip angle is difficult to measure within the desired accuracy level because of high costs and other associated impracticalities. This paper presents a novel framework for estimation of the vehicle sideslip angle. The proposed algorithm utilizes an adaptive tire model in conjunction with a model-based observer. The proposed adaptive tire model is capable of coping with changes to the tire operating conditions. More specifically, extensions have been made to Pacejka's Magic Formula expressions for the tire cornering stiffness and peak grip level. These model extensions account for variations in the tire inflation pressure, load, tread depth and temperature. The vehicle sideslip estimation algorithm is evaluated through experimental tests done on a rear wheel drive (RWD) vehicle. Detailed experimental results show that the developed system can reliably estimate the vehicle sideslip angle during both steady state and transient maneuvers.

Sensor Review ◽  
2019 ◽  
Vol 40 (2) ◽  
pp. 255-272
Author(s):  
Kanwar Bharat Singh

Purpose The vehicle sideslip angle is an important state of vehicle lateral dynamics and its knowledge is crucial for the successful implementation of advanced driver-assistance systems. Measuring the vehicle sideslip angle on a production vehicle is challenging because of the exorbitant price of a physical sensor. This paper aims to present a novel framework for virtually sensing/estimating the vehicle sideslip angle. The desired level of accuracy for the estimator is to be within +/− 0.2 degree of the actual sideslip angle of the vehicle. This will make the precision of the proposed estimator at par with expensive commercially available sensors used for physically measuring the vehicle sideslip angle. Design/methodology/approach The proposed estimator uses an adaptive tire model in conjunction with a model-based observer. The performance of the estimator is evaluated through experimental tests on a rear-wheel drive vehicle. Findings Detailed experimental results show that the developed system can reliably estimate the vehicle sideslip angle during both steady state and transient maneuvers, within the desired accuracy levels. Originality/value This paper presents a novel framework for vehicle sideslip angle estimation. The presented framework combines an adaptive tire model, an unscented Kalman filter-based axle force observer and data from tire mounted sensors. Tire model adaptation is achieved by making extensions to the magic formula, by accounting for variations in the tire inflation pressure, load, tread-depth and temperature. Predictions with the adapted tire model were validated by running experiments on the Flat-Trac® machine. The benefits of using an adaptive tire model for sideslip angle estimation are demonstrated through experimental tests. The performance of the observer is satisfactory, in both transient and steady state maneuvers. Future work will focus on measuring tire slip angle and road friction information using tire mounted sensors and using that information to further enhance the robustness of the vehicle sideslip angle observer.


Author(s):  
Giulio Panzani ◽  
Matteo Corno ◽  
Mara Tanelli ◽  
Sergio M. Savaresi ◽  
Andrea Fortina ◽  
...  

In advanced vehicle stability control systems, the availability of online estimates of the vehicle attitude is essential. In four-wheeled vehicles, attitude information is deeply linked to vehicle sideslip angle and sideslip rate, since these variables are strictly related to instability phenomena, safety and handling performances. As direct measurements of such quantities cannot be performed with standard sensors equipment, the design of robust and efficient estimators is needed. In this paper, we tackle the problem by proposing a sideslip rate observer and by demonstrating how an existing sideslip estimation algorithm can be made robust and reliable by online compensation of the sensors bias via a recursive identification approach. The proposed method does not require any additional sensor, making the final solution suitable for industrial applications. Experimental results confirm the effectiveness of the sensors offset compensation and witness satisfactory results of the overall vehicle attitude estimation scheme.


Author(s):  
Francesco Braghin ◽  
Federico Cheli ◽  
Edoardo Sabbioni

Individual tire model parameters are traditionally derived from expensive component indoor laboratory tests as a result of an identification procedure minimizing the error with respect to force and slip measurements. These parameters are then transferred to vehicle models used at a design stage to simulate the vehicle handling behavior. A methodology aimed at identifying the Magic Formula-Tyre (MF-Tyre) model coefficients of each individual tire for pure cornering conditions based only on the measurements carried out on board vehicle (vehicle sideslip angle, yaw rate, lateral acceleration, speed and steer angle) during standard handling maneuvers (step-steers) is instead presented in this paper. The resulting tire model thus includes vertical load dependency and implicitly compensates for suspension geometry and compliance (i.e., scaling factors are included into the identified MF coefficients). The global number of tests (indoor and outdoor) needed for characterizing a tire for handling simulation purposes can thus be reduced. The proposed methodology is made in three subsequent steps. During the first phase, the average MF coefficients of the tires of an axle and the relaxation lengths are identified through an extended Kalman filter. Then the vertical loads and the slip angles at each tire are estimated. The results of these two steps are used as inputs to the last phase, where, the MF-Tyre model coefficients for each individual tire are identified through a constrained minimization approach. Results of the identification procedure have been compared with experimental data collected on a sport vehicle equipped with different tires for the front and the rear axles and instrumented with dynamometric hubs for tire contact forces measurement. Thus, a direct matching between the measured and the estimated contact forces could be performed, showing a successful tire model identification. As a further verification of the obtained results, the identified tire model has also been compared with laboratory tests on the same tire. A good agreement has been observed for the rear tire where suspension compliance is negligible, while front tire data are comparable only after including a suspension compliance compensation term into the identification procedure.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Edoardo Sabbioni ◽  
Ruixin Bao ◽  
Federico Cheli ◽  
Davide Tarsitano

Mathematical models simulating the handling behavior of passenger cars are extensively used at a design stage for evaluating the effects of new structural solutions or control systems. The main source of uncertainty in these type of models lies in tire–road interaction, due to high nonlinearity. Proper estimation of tire model parameters is thus of utter importance to obtain reliable results. This paper presents a methodology aimed at identifying the magic formula-tire (MF-Tire) model coefficients of the tires of an axle only based on measurements carried out on board vehicle (vehicle sideslip angle, yaw rate, lateral acceleration, speed, and steer angle) during standard handling maneuvers (step-steers, double lane changes, etc.). The proposed methodology is based on particle filtering (PF) technique. PF may become a serious alternative to classic model-based techniques, such as Kalman filters. Results of the identification procedure were first checked through simulations. Then, PF was applied to experimental data collected using an instrumented passenger car.


Author(s):  
Milad Jalali ◽  
Amir Khajepour ◽  
Shih-ken Chen ◽  
Bakhtiar Litkouhi

In this paper, a new approach is proposed to deal with the delay in vehicle stability control using model predictive control (MPC). The vehicle considered here is a rear-wheel drive electric (RWD) vehicle. The yaw rate response of the vehicle is modified by means of torque vectoring so that it tracks the desired yaw rate. Presence of delays in a control loop can severely degrade controller performance and even cause instability. The common approaches for handling delays are often complex in design and tuning or require an increase in the dimensions of the controller. The proposed method is easy to implement and does not entail complex design or tuning process. Moreover, it does not increase the complexity of the controller; therefore, the amount of online computation is not appreciably affected. The effectiveness of the proposed method is verified by means of carsim/simulink simulations as well as experiments with a rear-wheel drive electric sport utility vehicle (SUV). The simulation results indicate that the proposed method can significantly reduce the adverse effect of the delays in the control loop. Experimental tests with the same vehicle also point to the effectiveness of this technique. Although this method is applied to a vehicle stability control, it is not specific to a certain class of problems and can be easily applied to a wide range of model predictive control problems with known delays.


Author(s):  
James A. D’Iorio ◽  
Joel Anstrom ◽  
Moustafa El-Gindy

A literature survey is conducted that compares the body of work written about dynamic yaw-moment control (DYC) systems implemented on vehicles with multiple electric motors. Four wheel drive, rear wheel drive, and front wheel drive vehicle architectures are compared with reference to advantages for DYC systems followed by a discussion on controller design. Advantages are weighed as to whether it is better to control vehicle yaw rate, body sideslip angle, or both. Next, methods for implementing the DYC system are evaluated. Sensors used, estimations made, and controller-type utilized are all discussed. Lastly, methods for simulation and testing are reviewed. The survey suggests that little progress has been made on front wheel drive vehicles. It was also determined that more work needs to be conducted on deciding desirable vehicle dynamics for handling. Investigations should be conducted to make these systems cost-effective and robust enough for production. Finally, future studies should include as much detailed simulation work and actual vehicle testing as possible as both are needed for a complete DYC investigation.


2018 ◽  
Vol 875 ◽  
pp. 117-121
Author(s):  
Danila Butin ◽  
Alexey Vasiliev ◽  
Anton Tumasov ◽  
Sergey Bagichev

The tire model validity factors are listed and discussed when using tires in complex multi-mass vehicle models. Complex vehicle system models are used to estimate (to forecast) their handling and stability properties (including Electronic Stability Control (ESC) performance). It should be as less as possible discrepancy between vehicle virtual computational and experimental tests results. The objective forces to create more complex vehicle models. A tire is known to be the one of the most significant elements in the model and to influence considerably on vehicle handling and stability factors transmitting all road reactions. The paper describes factors to be able to get influence on the PAC2002 pneumatic tire model validity when simulating it in MSC.ADAMS/Car Software. The tire model creating begins by conducting studies of rolling tire characteristics. The studies are examined on tire benches. Conducting experimental studies there are the set of factors to be able to bring a measurement error into study results. The analysis of various literary sources has permitted to choose three basic factors to be able to get influenced on tire model and all the vehicle model validity. Among these factors there are following: tire pressure, tire temperature и tire tread wear. The most significant of these factors is the tire pressure. For providing required study accuracy it needs to apply tight restrictions on each factor changing range influencing on rolling tire characteristics. The ranges are to be determined for each certain tire model by using study results.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 394 ◽  
Author(s):  
Michele Vignati ◽  
Edoardo Sabbioni ◽  
Federico Cheli

When dealing with electric vehicles, different powertrain layouts can be exploited. Among them, the most interesting one in terms of vehicle lateral dynamics is represented by the one with independent electric motors: two or four electric motors. This allows torque-vectoring control strategies to be applied for increasing vehicle lateral performance and stability. In this paper, a novel control strategy based on torque-vectoring is used to design a drifting control that helps the driver in controlling the vehicle in such a condition. Drift is a particular cornering condition in which high values of sideslip angle are obtained and maintained during the turn. The controller is applied to a rear-wheel drive race car prototype with two independent electric motors on the rear axle. The controller relies only on lateral acceleration, yaw rate, and vehicle speed measurement. This makes it independent from state estimators, which can affect its performance and robustness.


2001 ◽  
Vol 29 (2) ◽  
pp. 108-132 ◽  
Author(s):  
A. Ghazi Zadeh ◽  
A. Fahim

Abstract The dynamics of a vehicle's tires is a major contributor to the vehicle stability, control, and performance. A better understanding of the handling performance and lateral stability of the vehicle can be achieved by an in-depth study of the transient behavior of the tire. In this article, the transient response of the tire to a steering angle input is examined and an analytical second order tire model is proposed. This model provides a means for a better understanding of the transient behavior of the tire. The proposed model is also applied to a vehicle model and its performance is compared with a first order tire model.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 4 ◽  
Author(s):  
Luqman S. Maraaba ◽  
Zakariya M. Al-Hamouz ◽  
Abdulaziz S. Milhem ◽  
Ssennoga Twaha

The application of line-start permanent magnet synchronous motors (LSPMSMs) is rapidly spreading due to their advantages of high efficiency, high operational power factor, being self-starting, rendering them as highly needed in many applications in recent years. Although there have been standard methods for the identification of parameters of synchronous and induction machines, most of them do not apply to LSPMSMs. This paper presents a study and analysis of different parameter identification methods for interior mount LSPMSM. Experimental tests have been performed in the laboratory on a 1-hp interior mount LSPMSM. The measurements have been validated by investigating the performance of the machine under different operating conditions using a developed qd0 mathematical model and an experimental setup. The dynamic and steady-state performance analyses have been performed using the determined parameters. It is found that the experimental results are close to the mathematical model results, confirming the accuracy of the studied test methods. Therefore, the output of this study will help in selecting the proper test method for LSPMSM.


Sign in / Sign up

Export Citation Format

Share Document