Performance Enhancement of Image Stitching Process Under Bound Energy Aided Feature Matching and Varying Noise Environments

2020 ◽  
Vol 17 (9) ◽  
pp. 4419-4424
Author(s):  
Venkat P. Patil ◽  
C. Ram Singla

Image mosaicing is a method that combines several images or pictures of the superposing field of view to create a panoramic high-resolution picture. In the field of medical imagery, satellite data, computer vision, military automatic target recognition can be seen the importance of image mosaicing. The present domains of studies in computer vision, computer graphics and photo graphics are image stitching and video stitching. The registration of images includes five primary phases: feature detection and description; matching feature; rejection of outliers; transformation function derivation; image replication. Stitching images from specific scenes is a difficult job when images can be picked up under different noise. In this paper, we examine an algorithm for seamless stitching of images in order to resolve all such problems by employing dehazing methods to the collected images, and before defining image features and bound energy characteristics that match image-based features of the SIFT-Scale Invariant Feature Transform. The proposed method experimentation is compared with the conventional methods of stitching of image using squared distance to match the feature. The proposed seamless stitching technique is assessed on the basis of the metrics, HSGV and VSGV. The analysis of this stitching algorithm aims to minimize the amount of computation time and discrepancies in the final stitched results obtained.

Panorama development is the basically method of integrating multiple images captured of the same scene under consideration to get high resolution image. This process is useful for combining multiple images which are overlapped to obtain larger image. Usefulness of Image stitching is found in the field related to medical imaging, data from satellites, computer vision and automatic target recognition in military applications. The goal objective of this research paper is basically for developing an high improved resolution and its quality panorama having with high accuracy and minimum computation time. Initially we compared different image feature detectors and tested SIFT, SURF, ORB to find out the rate of detection of the corrected available key points along with processing time. Later on, testing is done with some common techniques of image blending or fusion for improving the mosaicing quality process. In this experimental results, it has been found out that ORB image feature detection and description algorithm is more accurate, fastest which gives a higher performance and Pyramid blending method gives the better stitching quality. Lastly panorama is developed based on combination of ORB binary descriptor method for finding out image features and pyramid blending method.


Author(s):  
Suresha .M ◽  
. Sandeep

Local features are of great importance in computer vision. It performs feature detection and feature matching are two important tasks. In this paper concentrates on the problem of recognition of birds using local features. Investigation summarizes the local features SURF, FAST and HARRIS against blurred and illumination images. FAST and Harris corner algorithm have given less accuracy for blurred images. The SURF algorithm gives best result for blurred image because its identify strongest local features and time complexity is less and experimental demonstration shows that SURF algorithm is robust for blurred images and the FAST algorithms is suitable for images with illumination.


2010 ◽  
Vol 9 (4) ◽  
pp. 29-34 ◽  
Author(s):  
Achim Weimert ◽  
Xueting Tan ◽  
Xubo Yang

In this paper, we present a novel feature detection approach designed for mobile devices, showing optimized solutions for both detection and description. It is based on FAST (Features from Accelerated Segment Test) and named 3D FAST. Being robust, scale-invariant and easy to compute, it is a candidate for augmented reality (AR) applications running on low performance platforms. Using simple calculations and machine learning, FAST is a feature detection algorithm known to be efficient but not very robust in addition to its lack of scale information. Our approach relies on gradient images calculated for different scale levels on which a modified9 FAST algorithm operates to obtain the values of the corner response function. We combine the detection with an adapted version of SURF (Speed Up Robust Features) descriptors, providing a system with all means to implement feature matching and object detection. Experimental evaluation on a Symbian OS device using a standard image set and comparison with SURF using Hessian matrix-based detector is included in this paper, showing improvements in speed (compared to SURF) and robustness (compared to FAST)


2021 ◽  
pp. 51-64
Author(s):  
Ahmed A. Elngar ◽  
◽  
◽  
◽  
◽  
...  

Feature detection, description and matching are essential components of various computer vision applications; thus, they have received a considerable attention in the last decades. Several feature detectors and descriptors have been proposed in the literature with a variety of definitions for what kind of points in an image is potentially interesting (i.e., a distinctive attribute). This chapter introduces basic notation and mathematical concepts for detecting and describing image features. Then, it discusses properties of perfect features and gives an overview of various existing detection and description methods. Furthermore, it explains some approaches to feature matching. Finally, the chapter discusses the most used techniques for performance evaluation of detection algorithms.


Author(s):  
Jun Long ◽  
Qunfeng Liu ◽  
Xinpan Yuan ◽  
Chengyuan Zhang ◽  
Junfeng Liu ◽  
...  

Image similarity measures play an important role in nearest neighbor search and duplicate detection for large-scale image datasets. Recently, Minwise Hashing (or Minhash) and its related hashing algorithms have achieved great performances in large-scale image retrieval systems. However, there are a large number of comparisons for image pairs in these applications, which may spend a lot of computation time and affect the performance. In order to quickly obtain the pairwise images that theirs similarities are higher than the specific thresholdT(e.g., 0.5), we propose a dynamic threshold filter of Minwise Hashing for image similarity measures. It greatly reduces the calculation time by terminating the unnecessary comparisons in advance. We also find that the filter can be extended to other hashing algorithms, on when the estimator satisfies the binomial distribution, such as b-Bit Minwise Hashing, One Permutation Hashing, etc. In this pager, we use the Bag-of-Visual-Words (BoVW) model based on the Scale Invariant Feature Transform (SIFT) to represent the image features. We have proved that the filter is correct and effective through the experiment on real image datasets.


2019 ◽  
Vol 8 (3) ◽  
pp. 7274-7279

Image mosaicing is a method where two or more pictures of the same image can be combined into a big picture and a high resolution panorama created. It is helpful for constructing a bigger picture with numerous overlapping pictures of the same scene. The image mosaic development is the union of two pictures. The significance of image mosaicing in the sector of computer vision, medical imaging, satellite data, army automatic target recognition can be seen. Picture stitching can be performed from a broad angle video taken from left to right to develop a wide-scale panorama to obtain a high-resolution picture. This research paper includes valuable content which will be very helpful for creating significant choices in vision-based apps and is intended primarily to establish a benchmark for scientists, regardless of their specific fields. In this paper it has been seen that distinct algorithms perform differently in terms of time complexity and image quality. We have looked at a variety of feature detectors and descriptors such as SIFT-SIFT, SURF-SURF, STAR-BRIEF and ORB-ORB for the development of video file panoramic images. We have noted that SIFT provides excellent outcomes, giving the image the largest amount of key points identified at the cost of computational time and SURF, ORB, has fewer key points obtained, where it has been seen that ORB is the simplest of the above algorithms, but produces no good performance quality image outcomes. A good compromise can be achieved with SURF. Depending on the application, the metric for image feature extraction would change. In addition, the speed of each algorithm is also recorded. This systemic analysis suggests many characteristics of the stitching of images.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 847 ◽  
Author(s):  
Dong Zhang ◽  
Lindsey Ann Raven ◽  
Dah-Jye Lee ◽  
Meng Yu ◽  
Alok Desai

Finding corresponding image features between two images is often the first step for many computer vision algorithms. This paper introduces an improved synthetic basis feature descriptor algorithm that describes and compares image features in an efficient and discrete manner with rotation and scale invariance. It works by performing a number of similarity tests between the feature region surrounding the feature point and a predetermined number of synthetic basis images to generate a feature descriptor that uniquely describes the feature region. Features in two images are matched by comparing their descriptors. By only storing the similarity of the feature region to each synthetic basis image, the overall storage size is greatly reduced. In short, this new binary feature descriptor is designed to provide high feature matching accuracy with computational simplicity, relatively low resource usage, and a hardware friendly design for real-time vision applications. Experimental results show that our algorithm produces higher precision rates and larger number of correct matches than the original version and other mainstream algorithms and is a good alternative for common computer vision applications. Two applications that often have to cope with scaling and rotation variations are included in this work to demonstrate its performance.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 391
Author(s):  
Dah-Jye Lee ◽  
Samuel G. Fuller ◽  
Alexander S. McCown

Feature detection, description, and matching are crucial steps for many computer vision algorithms. These steps rely on feature descriptors to match image features across sets of images. Previous work has shown that our SYnthetic BAsis (SYBA) feature descriptor can offer superior performance to other binary descriptors. This paper focused on various optimizations and hardware implementation of the newer and optimized version. The hardware implementation on a field-programmable gate array (FPGA) is a high-throughput low-latency solution which is critical for applications such as high-speed object detection and tracking, stereo vision, visual odometry, structure from motion, and optical flow. We compared our solution to other hardware designs of binary descriptors. We demonstrated that our implementation of SYBA as a feature descriptor in hardware offered superior image feature matching performance and used fewer resources than most binary feature descriptor implementations.


Author(s):  
Vanshul Bhasker

This electronic document is a report on Image Stitching. Image stitching is the process of creating an image panorama from a given set of images that have some common(overlapping) area in them. Previous researches done on this topic show that there is still a lot of scope for improvement in this field as although we are able to achieve good results but we haven’t really been able to achieve perfection. There are a lot of factors that are to be blamed here. While Stitching Images, there could be many challenges such as images being corrupt by noise and/or presence of parallax in the images. Image Stitching process is divided into 5 major steps: Image Registration, Feature Detection, Feature Matching, Homography Estimation and Image Blending. In this document we are going to discuss the current status of image processing techniques and what are the challenges being faced.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 348 ◽  
Author(s):  
Huaitao Shi ◽  
Lei Guo ◽  
Shuai Tan ◽  
Gang Li ◽  
Jie Sun

Image stitching aims at generating high-quality panoramas with the lowest computational cost. In this paper, we present an improved parallax image-stitching algorithm using feature blocks (PIFB), which achieves a more accurate alignment and faster calculation speed. First, each image is divided into feature blocks using an improved fuzzy C-Means (FCM) algorithm, and the characteristic descriptor of each feature block is extracted using scale invariant feature transform (SIFT). The feature matching block of the reference image and the target image are matched and then determined, and the image is pre-registered using the homography calculated by the feature points in the feature block. Finally, the overlapping area is optimized to avoid ghosting and shape distortion. The improved algorithm considering pre-blocking and block stitching effectively reduced the iterative process of feature point matching and homography calculation. More importantly, the problem that the calculated homography matrix was not global has been solved. Ghosting and shape warping are significantly eliminated by re-optimizing the overlap of the image. The performance of the proposed approach is demonstrated using several challenging cases.


Sign in / Sign up

Export Citation Format

Share Document