scholarly journals Design and Construction of a Cost-Effective Didactic Robotic Arm for Playing Chess, Using an Artificial Vision System

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1154 ◽  
Author(s):  
Cristian del Toro ◽  
Carlos Robles-Algarín ◽  
Omar Rodríguez-Álvarez

This paper presents the design and construction of a robotic arm that plays chess against a human opponent, based on an artificial vision system. The mechanical design was an adaptation of the robotic arm proposed by the rapid prototyping laboratory FabLab RUC (Fabrication Laboratory of the University of Roskilde). Using the software Solidworks, a gripper with 4 joints was designed. An artificial vision system was developed for detecting the corners of the squares on a chessboard and performing image segmentation. Then, an image recognition model was trained using convolutional neural networks to detect the movements of pieces on the board. An image-based visual servoing system was designed using the Kanade–Lucas–Tomasi method, in order to locate the manipulator. Additionally, an Arduino development board was programmed to control and receive information from the robotic arm using Gcode commands. Results show that with the Stockfish chess game engine, the system is able to make game decisions and manipulate the pieces on the board. In this way, it was possible to implement a didactic robotic arm as a relevant application in data processing and decision-making for programmable automatons.


2020 ◽  
Vol 2 (3) ◽  
pp. 141-146
Author(s):  
Dr. Ranganathan G.

The proposed paper outlines the design of an economical robotic arm which is used to visualize the chess board and play with the opponent using visual servoing system. We have used the FaBLab RUC's mechanical design prototype proposed and have further used Solidworks software to design the 4 jointed gripper. The proposed methodology involves detecting the squares on the corners of the chessboard and further segmenting the images. This is followed by using convolutional neural networks to train and recognize the image in order to determine the movement of the chess pieces. To trace the manipulator, Kanade-Lucas-Tomasi method is used in the visual servoing system. An Arduino uses Gcode commands to interact with the robotic arm. Game Decisions are taken with the help of chess game engine the pieces on the board are moved accordingly. Thus a didactic robotic arm is developed for decision making and data processing, serving to be a good opponent in playing chess.



2020 ◽  
Author(s):  
Yomin Estiven Jaramillo Munera ◽  
Jhon Edison Goez Mora ◽  
Juan Camilo Londoño Lopera ◽  
Edgar Mario Rico Mesa


Author(s):  
John Lowery ◽  
Carl A. Nelson

Abstract This paper outlines the design of a reconfigurable, partially disposable, tendon-driven robotic arm for providing assistance in laparoscopic surgery. The rationale for its development and design objectives are provided, followed by a description of its mechanical design. Kinematic simulations to assess workspace are presented, and a first-stage assessment of the functionality of a prototype using a custom test bench is also included.



Author(s):  
Roshahliza M Ramli ◽  
Nurul Aqilah Herman ◽  
Muhammad Ridzuan Mazlan ◽  
Azlin Suraya Nazaruddin ◽  
Muhammad Arshad Tuah ◽  
...  

<p><span>Rover is a robotic system that integrates a simple system implementing electrical and mechanical components together. In this study, we propose a rover using mechanical components which consist of a robotic arm, joint and mechanical gripper, backbone chassis and continues track, while the electrical components include servo motor, servo controller, transmitter and receiver for vision system and wireless controller via USB host as its control system. The purpose of this project is for monitoring and safety purposes. In addition, the main goal of this project is to develop a simple robotic rover that is easy to build and manufacture as well as cost-effective. To add more functionality on this rover, it is equipped with a robotic arm and real-time view camera integration. This rover is equipped with a first-person view (FPV) camera, an integrated camera on the rover that can give clear visibility and direction to the rover pilot. The live feed can be viewed on the monitor inside the command station box. It can be used to assist safety authorities to collect information &amp; insights, work lift to collect and remove the load and to conduct search and rescue operation. As for the result, the mobility system of the robotic rover at terrain surfaces and analyses the capabilities of the chassis during lifting load had been tested.</span></p>



2003 ◽  
Vol 43 (9) ◽  
pp. 1271-1279
Author(s):  
Alexis Quesada-Arencibia ◽  
Roberto Moreno-Díaz ◽  
Miguel Aleman-Flores


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Francesco Samani ◽  
Marco Ceccarelli

TORVEastro robot design is presented with a built prototype in LARM2 (Laboratory of Robot Mechatronics) for testing and characterizing its functionality for service in space stations. Several robot astronauts are designed with bulky human-like structures that cannot be convenient for outdoor space service in monitoring and maintenance of the external structures of orbital stations. The design features of TORVEastro robot are discussed with its peculiar mechanical design with 3 arm-legs as agile service robot astronaut. A lab prototype is used to test the operation performance and the feasibility of its peculiar design. The robot weighs 1 kg, and consists of a central torso, three identical three-degree of freedom (DoF) arm–legs and one vision system. Test results are reported to discuss the operation efficiency in terms of motion characteristics and power consumption during lab experiments that nevertheless show the feasibility of the robot for outdoor space applications.



Author(s):  
Brandon McHaffie ◽  
Peter Routledge ◽  
Alessandro Palermo

<p>Research on low-damage systems has been significant in the past decade. These systems combine post- tensioning, which provides self-centring; and typically use replaceable devices, which give energy dissipation. WSP has used recent research, carried out at the University of Canterbury, on low-damage bridge piers and applied this into a real structure – the Wigram-Magdala Link Bridge. This is believed to be the first bridge in New Zealand and possibly worldwide to adopt such a system. Given this was the first application of the system to a real structure, there were some valuable learnings during design and construction. Firstly, the application of axial dissipaters has some limitations due to available material sizes, construction difficulty and aesthetics. Secondly, there is still some additional cost and complexity associated with using the low-damage system. Given these difficulties, this paper presents an alternative design philosophy which better captures the benefits of the low-damage system, which include cost-effective repair method, controlled damage and additional robustness and resilience. The alternative design philosophy presented is expected to result in reduced construction costs by reducing pier and foundation demands. Peak displacements and forces will be compared to the results from non-linear time history analysis to verify the performance of the low-damage connection using scaled ground motions. Furthermore, the paper will present the possible application of an alternative dissipation device, the lead extrusion damper, which can further improve the performance of low-damage connections.</p>



2016 ◽  
Vol 6 (2) ◽  
pp. 135
Author(s):  
Cristina Barris ◽  
Lluís Torres ◽  
Enric Simon

This article presents the results of a case involving the application of project-based learning carried out with students in the Mechanical Engineering degree program at the University of Girona. The project, entitled “Design and construction of a wooden bridge”, was conducted at the Polytechnic School in the third-year Structures course. This project required students to address, consider and solve different problems related to the resistance of materials, structural calculations, material optimization and structural design. The project also included the building of the bridge based on the calculations made, thus enabling the students to verify the suitability of the theoretical calculations as compared to real results. Finally, a competition was held to reward those teams who obtained the best ratio between the failure load and the weight of the bridge. The main conclusion observed from the implementation of only two editions of this project is the acquisition of the different proposed competences (both specific and cross-curricular) by the students. Finally, it was interesting to note that after completing the activity, the students were observed to be more motivated by the course content.





Sign in / Sign up

Export Citation Format

Share Document