scholarly journals Structure Fusion Based on Graph Convolutional Networks for Node Classification in Citation Networks

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 432
Author(s):  
Guangfeng Lin ◽  
Jing Wang ◽  
Kaiyang Liao ◽  
Fan Zhao ◽  
Wanjun Chen

Suffering from the multi-view data diversity and complexity, most of the existing graph convolutional networks focus on the networks’ architecture construction or the salient graph structure preservation for node classification in citation networks and usually ignore capturing the complete graph structure of nodes for enhancing classification performance. To mine the more complete distribution structure from multi-graph structures of multi-view data with the consideration of their specificity and the commonality, we propose structure fusion based on graph convolutional networks (SF-GCN) for improving the performance of node classification in a semi-supervised way. SF-GCN can not only exploit the special characteristic of each view datum by spectral embedding preserving multi-graph structures, but also explore the common style of multi-view data by the distance metric between multi-graph structures. Suppose the linear relationship between multi-graph structures; we can construct the optimization function of the structure fusion model by balancing the specificity loss and the commonality loss. By solving this function, we can simultaneously obtain the fusion spectral embedding from the multi-view data and the fusion structure as the adjacent matrix to input graph convolutional networks for node classification in a semi-supervised way. Furthermore, we generalize the structure fusion to structure diffusion propagation and present structure propagation fusion based on graph convolutional networks (SPF-GCN) for utilizing these structure interactions. Experiments demonstrate that the performance of SPF-GCN outperforms that of the state-of-the-art methods on three challenging datasets, which are Cora, Citeseer, and Pubmed in citation networks.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weiwei Gu ◽  
Fei Gao ◽  
Xiaodan Lou ◽  
Jiang Zhang

AbstractIn this paper, we propose graph attention based network representation (GANR) which utilizes the graph attention architecture and takes graph structure as the supervised learning information. Compared with node classification based representations, GANR can be used to learn representation for any given graph. GANR is not only capable of learning high quality node representations that achieve a competitive performance on link prediction, network visualization and node classification but it can also extract meaningful attention weights that can be applied in node centrality measuring task. GANR can identify the leading venture capital investors, discover highly cited papers and find the most influential nodes in Susceptible Infected Recovered Model. We conclude that link structures in graphs are not limited on predicting linkage itself, it is capable of revealing latent node information in an unsupervised way once a appropriate learning algorithm, like GANR, is provided.


Author(s):  
Jing Jin ◽  
Hua Fang ◽  
Ian Daly ◽  
Ruocheng Xiao ◽  
Yangyang Miao ◽  
...  

The common spatial patterns (CSP) algorithm is one of the most frequently used and effective spatial filtering methods for extracting relevant features for use in motor imagery brain–computer interfaces (MI-BCIs). However, the inherent defect of the traditional CSP algorithm is that it is highly sensitive to potential outliers, which adversely affects its performance in practical applications. In this work, we propose a novel feature optimization and outlier detection method for the CSP algorithm. Specifically, we use the minimum covariance determinant (MCD) to detect and remove outliers in the dataset, then we use the Fisher score to evaluate and select features. In addition, in order to prevent the emergence of new outliers, we propose an iterative minimum covariance determinant (IMCD) algorithm. We evaluate our proposed algorithm in terms of iteration times, classification accuracy and feature distribution using two BCI competition datasets. The experimental results show that the average classification performance of our proposed method is 12% and 22.9% higher than that of the traditional CSP method in two datasets ([Formula: see text]), and our proposed method obtains better performance in comparison with other competing methods. The results show that our method improves the performance of MI-BCI systems.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
David F. Wyatt ◽  
David C. Wynn ◽  
P. John Clarkson

Graph structures are fundamental in many aspects of design. This paper discusses a way to improve access to design spaces of graph structures, by converting graph structures into numerical values and vice versa. Mathematical properties of such conversions are described, and those that are desirable are identified. A candidate conversion algorithm, Indexed Stacked Blocks, is proposed. Its use and benefits are illustrated through an example graph-structure design problem. The example demonstrates that such conversions allow design spaces of graph structures to be visualized, sampled, and evaluated. In principle, they also allow other powerful numerical techniques to be applied to the design of graph-structure-based systems.


Author(s):  
Bingbing Xu ◽  
Huawei Shen ◽  
Qi Cao ◽  
Keting Cen ◽  
Xueqi Cheng

Graph convolutional networks gain remarkable success in semi-supervised learning on graph-structured data. The key to graph-based semisupervised learning is capturing the smoothness of labels or features over nodes exerted by graph structure. Previous methods, spectral methods and spatial methods, devote to defining graph convolution as a weighted average over neighboring nodes, and then learn graph convolution kernels to leverage the smoothness to improve the performance of graph-based semi-supervised learning. One open challenge is how to determine appropriate neighborhood that reflects relevant information of smoothness manifested in graph structure. In this paper, we propose GraphHeat, leveraging heat kernel to enhance low-frequency filters and enforce smoothness in the signal variation on the graph. GraphHeat leverages the local structure of target node under heat diffusion to determine its neighboring nodes flexibly, without the constraint of order suffered by previous methods. GraphHeat achieves state-of-the-art results in the task of graph-based semi-supervised classification across three benchmark datasets: Cora, Citeseer and Pubmed.


Author(s):  
Zhichao Huang ◽  
Xutao Li ◽  
Yunming Ye ◽  
Michael K. Ng

Graph Convolutional Networks (GCNs) have been extensively studied in recent years. Most of existing GCN approaches are designed for the homogenous graphs with a single type of relation. However, heterogeneous graphs of multiple types of relations are also ubiquitous and there is a lack of methodologies to tackle such graphs. Some previous studies address the issue by performing conventional GCN on each single relation and then blending their results. However, as the convolutional kernels neglect the correlations across relations, the strategy is sub-optimal. In this paper, we propose the Multi-Relational Graph Convolutional Network (MR-GCN) framework by developing a novel convolution operator on multi-relational graphs. In particular, our multi-dimension convolution operator extends the graph spectral analysis into the eigen-decomposition of a Laplacian tensor. And the eigen-decomposition is formulated with a generalized tensor product, which can correspond to any unitary transform instead of limited merely to Fourier transform. We conduct comprehensive experiments on four real-world multi-relational graphs to solve the semi-supervised node classification task, and the results show the superiority of MR-GCN against the state-of-the-art competitors.


Author(s):  
Parian Haghighat ◽  
Aden Prince ◽  
Heejin Jeong

The growth in self-fitness mobile applications has encouraged people to turn to personal fitness, which entails integrating self-tracking applications with exercise motion data to reduce fatigue and mitigate the risk of injury. The advancements in computer vision and motion capture technologies hold great promise to improve exercise classification performance. This study investigates a supervised deep learning model performance, Graph Convolutional Network (GCN) to classify three workouts using the Azure Kinect device’s motion data. The model defines the skeleton as a graph and combines GCN layers, a readout layer, and multi-layer perceptrons to build an end-to-end framework for graph classification. The model achieves an accuracy of 95.86% in classifying 19,442 frames. The current model exchanges feature information between each joint and its 1-nearest neighbor, which impact fades in graph-level classification. Therefore, a future study on improved feature utilization can enhance the model performance in classifying inter-user exercise variation.


2021 ◽  
pp. 1-13
Author(s):  
A.A. Talebi ◽  
G. Muhiuddin ◽  
S.H. Sadati ◽  
Hossein Rashmanlou

Fuzzy graphs have a prominent place in the mathematical modelling of the problems due to the simplicity of representing the relationships between topics. Gradually, with the development of science and in encountering with complex problems and the existence of multiple relationships between variables, the need to consider fuzzy graphs with multiple relationships was felt. With the introduction of the graph structures, there was better flexibility than the graph in dealing with problems. By combining a graph structure with a fuzzy graph, a fuzzy graph structure was introduced that increased the decision-making power of complex problems based on uncertainties. The previous definitions restrictions in fuzzy graphs have made us present new definitions in the fuzzy graph structure. The domination of fuzzy graphs has many applications in other sciences including computer science, intelligent systems, psychology, and medical sciences. Hence, in this paper, first we study the dominating set in a fuzzy graph structure from the perspective of the domination number of its fuzzy relationships. Likewise, we determine the domination in terms of neighborhood, degree, and capacity of vertices with some examples. Finally, applications of domination are introduced in fuzzy graph structure.


Author(s):  
Hao Deng ◽  
Chao Ma ◽  
Lijun Shen ◽  
Chuanwu Yang

In this paper, we present a novel semi-supervised classification method based on sparse representation (SR) and multiple one-dimensional embedding-based adaptive interpolation (M1DEI). The main idea of M1DEI is to embed the data into multiple one-dimensional (1D) manifolds satisfying that the connected samples have shortest distance. In this way, the problem of high-dimensional data classification is transformed into a 1D classification problem. By alternating interpolation and averaging on the multiple 1D manifolds, the labeled sample set of the data can enlarge gradually. Obviously, proper metric facilitates more accurate embedding and further helps improve the classification performance. We develop a SR-based metric, which measures the affinity between samples more accurately than the common Euclidean distance. The experimental results on several databases show the effectiveness of the improvement.


Sign in / Sign up

Export Citation Format

Share Document