scholarly journals Semantic Segmentation Framework for Glomeruli Detection and Classification in Kidney Histological Sections

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 503 ◽  
Author(s):  
Nicola Altini ◽  
Giacomo Donato Cascarano ◽  
Antonio Brunetti ◽  
Francescomaria Marino ◽  
Maria Teresa Rocchetti ◽  
...  

The evaluation of kidney biopsies performed by expert pathologists is a crucial process for assessing if a kidney is eligible for transplantation. In this evaluation process, an important step consists of the quantification of global glomerulosclerosis, which is the ratio between sclerotic glomeruli and the overall number of glomeruli. Since there is a shortage of organs available for transplantation, a quick and accurate assessment of global glomerulosclerosis is essential for retaining the largest number of eligible kidneys. In the present paper, the authors introduce a Computer-Aided Diagnosis (CAD) system to assess global glomerulosclerosis. The proposed tool is based on Convolutional Neural Networks (CNNs). In particular, the authors considered approaches based on Semantic Segmentation networks, such as SegNet and DeepLab v3+. The dataset has been provided by the Department of Emergency and Organ Transplantations (DETO) of Bari University Hospital, and it is composed of 26 kidney biopsies coming from 19 donors. The dataset contains 2344 non-sclerotic glomeruli and 428 sclerotic glomeruli. The proposed model consents to achieve promising results in the task of automatically detecting and classifying glomeruli, thus easing the burden of pathologists. We get high performance both at pixel-level, achieving mean F-score higher than 0.81, and Weighted Intersection over Union (IoU) higher than 0.97 for both SegNet and Deeplab v3+ approaches, and at object detection level, achieving 0.924 as best F-score for non-sclerotic glomeruli and 0.730 as best F-score for sclerotic glomeruli.

Author(s):  
Wei Ji ◽  
Xi Li ◽  
Yueting Zhuang ◽  
Omar El Farouk Bourahla ◽  
Yixin Ji ◽  
...  

Clothing segmentation is a challenging vision problem typically implemented within a fine-grained semantic segmentation framework. Different from conventional segmentation, clothing segmentation has some domain-specific properties such as texture richness, diverse appearance variations, non-rigid geometry deformations, and small sample learning. To deal with these points, we propose a semantic locality-aware segmentation model, which adaptively attaches an original clothing image with a semantically similar (e.g., appearance or pose) auxiliary exemplar by search. Through considering the interactions of the clothing image and its exemplar, more intrinsic knowledge about the locality manifold structures of clothing images is discovered to make the learning process of small sample problem more stable and tractable. Furthermore, we present a CNN model based on the deformable convolutions to extract the non-rigid geometry-aware features for clothing images. Experimental results demonstrate the effectiveness of the proposed model against the state-of-the-art approaches.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1768
Author(s):  
Nicola Altini ◽  
Giacomo Donato Cascarano ◽  
Antonio Brunetti ◽  
Irio De Feudis ◽  
Domenico Buongiorno ◽  
...  

The histological assessment of glomeruli is fundamental for determining if a kidney is suitable for transplantation. The Karpinski score is essential to evaluate the need for a single or dual kidney transplant and includes the ratio between the number of sclerotic glomeruli and the overall number of glomeruli in a kidney section. The manual evaluation of kidney biopsies performed by pathologists is time-consuming and error-prone, so an automatic framework to delineate all the glomeruli present in a kidney section can be very useful. Our experiments have been conducted on a dataset provided by the Department of Emergency and Organ Transplantations (DETO) of Bari University Hospital. This dataset is composed of 26 kidney biopsies coming from 19 donors. The rise of Convolutional Neural Networks (CNNs) has led to a realm of methods which are widely applied in Medical Imaging. Deep learning techniques are also very promising for the segmentation of glomeruli, with a variety of existing approaches. Many methods only focus on semantic segmentation—which consists in segmentation of individual pixels—or ignore the problem of discriminating between non-sclerotic and sclerotic glomeruli, so these approaches are not optimal or inadequate for transplantation assessment. In this work, we employed an end-to-end fully automatic approach based on Mask R-CNN for instance segmentation and classification of glomeruli. We also compared the results obtained with a baseline based on Faster R-CNN, which only allows detection at bounding boxes level. With respect to the existing literature, we improved the Mask R-CNN approach in sliding window contexts, by employing a variant of the Non-Maximum Suppression (NMS) algorithm, which we called Non-Maximum-Area Suppression (NMAS). The obtained results are very promising, leading to improvements over existing literature. The baseline Faster R-CNN-based approach obtained an F-Measure of 0.904 and 0.667 for non-sclerotic and sclerotic glomeruli, respectively. The Mask R-CNN approach has a significant improvement over the baseline, obtaining an F-Measure of 0.925 and 0.777 for non-sclerotic and sclerotic glomeruli, respectively. The proposed method is very promising for the instance segmentation and classification of glomeruli, and allows to make a robust evaluation of global glomerulosclerosis. We also compared Karpinski score obtained with our algorithm to that obtained with pathologists’ annotations to show the soundness of the proposed workflow from a clinical point of view.


2020 ◽  
Vol 15 (1) ◽  
pp. 588-596 ◽  
Author(s):  
Jie Meng ◽  
Linyan Xue ◽  
Ying Chang ◽  
Jianguang Zhang ◽  
Shilong Chang ◽  
...  

AbstractColorectal cancer (CRC) is one of the main alimentary tract system malignancies affecting people worldwide. Adenomatous polyps are precursors of CRC, and therefore, preventing the development of these lesions may also prevent subsequent malignancy. However, the adenoma detection rate (ADR), a measure of the ability of a colonoscopist to identify and remove precancerous colorectal polyps, varies significantly among endoscopists. Here, we attempt to use a convolutional neural network (CNN) to generate a unique computer-aided diagnosis (CAD) system by exploring in detail the multiple-scale performance of deep neural networks. We applied this system to 3,375 hand-labeled images from the screening colonoscopies of 1,197 patients; of whom, 3,045 were assigned to the training dataset and 330 to the testing dataset. The images were diagnosed simply as either an adenomatous or non-adenomatous polyp. When applied to the testing dataset, our CNN-CAD system achieved a mean average precision of 89.5%. We conclude that the proposed framework could increase the ADR and decrease the incidence of interval CRCs, although further validation through large multicenter trials is required.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 651
Author(s):  
Shengyi Zhao ◽  
Yun Peng ◽  
Jizhan Liu ◽  
Shuo Wu

Crop disease diagnosis is of great significance to crop yield and agricultural production. Deep learning methods have become the main research direction to solve the diagnosis of crop diseases. This paper proposed a deep convolutional neural network that integrates an attention mechanism, which can better adapt to the diagnosis of a variety of tomato leaf diseases. The network structure mainly includes residual blocks and attention extraction modules. The model can accurately extract complex features of various diseases. Extensive comparative experiment results show that the proposed model achieves the average identification accuracy of 96.81% on the tomato leaf diseases dataset. It proves that the model has significant advantages in terms of network complexity and real-time performance compared with other models. Moreover, through the model comparison experiment on the grape leaf diseases public dataset, the proposed model also achieves better results, and the average identification accuracy of 99.24%. It is certified that add the attention module can more accurately extract the complex features of a variety of diseases and has fewer parameters. The proposed model provides a high-performance solution for crop diagnosis under the real agricultural environment.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 973
Author(s):  
Valentina Giannini ◽  
Simone Mazzetti ◽  
Giovanni Cappello ◽  
Valeria Maria Doronzio ◽  
Lorenzo Vassallo ◽  
...  

Recently, Computer Aided Diagnosis (CAD) systems have been proposed to help radiologists in detecting and characterizing Prostate Cancer (PCa). However, few studies evaluated the performances of these systems in a clinical setting, especially when used by non-experienced readers. The main aim of this study is to assess the diagnostic performance of non-experienced readers when reporting assisted by the likelihood map generated by a CAD system, and to compare the results with the unassisted interpretation. Three resident radiologists were asked to review multiparametric-MRI of patients with and without PCa, both unassisted and assisted by a CAD system. In both reading sessions, residents recorded all positive cases, and sensitivity, specificity, negative and positive predictive values were computed and compared. The dataset comprised 90 patients (45 with at least one clinically significant biopsy-confirmed PCa). Sensitivity significantly increased in the CAD assisted mode for patients with at least one clinically significant lesion (GS > 6) (68.7% vs. 78.1%, p = 0.018). Overall specificity was not statistically different between unassisted and assisted sessions (94.8% vs. 89.6, p = 0.072). The use of the CAD system significantly increases the per-patient sensitivity of inexperienced readers in the detection of clinically significant PCa, without negatively affecting specificity, while significantly reducing overall reporting time.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1365
Author(s):  
Tao Zheng ◽  
Zhizhao Duan ◽  
Jin Wang ◽  
Guodong Lu ◽  
Shengjie Li ◽  
...  

Semantic segmentation of room maps is an essential issue in mobile robots’ execution of tasks. In this work, a new approach to obtain the semantic labels of 2D lidar room maps by combining distance transform watershed-based pre-segmentation and a skillfully designed neural network lidar information sampling classification is proposed. In order to label the room maps with high efficiency, high precision and high speed, we have designed a low-power and high-performance method, which can be deployed on low computing power Raspberry Pi devices. In the training stage, a lidar is simulated to collect the lidar detection line maps of each point in the manually labelled map, and then we use these line maps and the corresponding labels to train the designed neural network. In the testing stage, the new map is first pre-segmented into simple cells with the distance transformation watershed method, then we classify the lidar detection line maps with the trained neural network. The optimized areas of sparse sampling points are proposed by using the result of distance transform generated in the pre-segmentation process to prevent the sampling points selected in the boundary regions from influencing the results of semantic labeling. A prototype mobile robot was developed to verify the proposed method, the feasibility, validity, robustness and high efficiency were verified by a series of tests. The proposed method achieved higher scores in its recall, precision. Specifically, the mean recall is 0.965, and mean precision is 0.943.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 898
Author(s):  
Marta Saiz-Vivó ◽  
Adrián Colomer ◽  
Carles Fonfría ◽  
Luis Martí-Bonmatí ◽  
Valery Naranjo

Atrial fibrillation (AF) is the most common cardiac arrhythmia. At present, cardiac ablation is the main treatment procedure for AF. To guide and plan this procedure, it is essential for clinicians to obtain patient-specific 3D geometrical models of the atria. For this, there is an interest in automatic image segmentation algorithms, such as deep learning (DL) methods, as opposed to manual segmentation, an error-prone and time-consuming method. However, to optimize DL algorithms, many annotated examples are required, increasing acquisition costs. The aim of this work is to develop automatic and high-performance computational models for left and right atrium (LA and RA) segmentation from a few labelled MRI volumetric images with a 3D Dual U-Net algorithm. For this, a supervised domain adaptation (SDA) method is introduced to infer knowledge from late gadolinium enhanced (LGE) MRI volumetric training samples (80 LA annotated samples) to a network trained with balanced steady-state free precession (bSSFP) MR images of limited number of annotations (19 RA and LA annotated samples). The resulting knowledge-transferred model SDA outperformed the same network trained from scratch in both RA (Dice equals 0.9160) and LA (Dice equals 0.8813) segmentation tasks.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 694
Author(s):  
Xuejiao Pang ◽  
Zijian Zhao ◽  
Ying Weng

At present, the application of artificial intelligence (AI) based on deep learning in the medical field has become more extensive and suitable for clinical practice compared with traditional machine learning. The application of traditional machine learning approaches to clinical practice is very challenging because medical data are usually uncharacteristic. However, deep learning methods with self-learning abilities can effectively make use of excellent computing abilities to learn intricate and abstract features. Thus, they are promising for the classification and detection of lesions through gastrointestinal endoscopy using a computer-aided diagnosis (CAD) system based on deep learning. This study aimed to address the research development of a CAD system based on deep learning in order to assist doctors in classifying and detecting lesions in the stomach, intestines, and esophagus. It also summarized the limitations of the current methods and finally presented a prospect for future research.


Author(s):  
Tuan A. Pham ◽  
Melis Sutman

The prediction of shear strength for unsaturated soils remains to be a significant challenge due to their complex multi-phase nature. In this paper, a review of prior experimental studies is firstly carried out to present important pieces of evidence, limitations, and some design considerations. Next, an overview of the existing shear strength equations is summarized with a brief discussion. Then, a micromechanical model with stress equilibrium conditions and multi-phase interaction considerations is presented to provide a new equation for predicting the shear strength of unsaturated soils. The validity of the proposed model is examined for several published shear strength data of different soil types. It is observed that the shear strength predicted by the analytical model is in good agreement with the experimental data, and get high performance compared to the existing models. The evaluation of the outcomes with two criteria, using average relative error and the normalized sum of squared error, proved the effectiveness and validity of the proposed equation. Using the proposed equation, the nonlinear relationship between shear strength, saturation degree, volumetric water content, and matric suction are observed.


2018 ◽  
Vol 4 (10) ◽  
pp. 116 ◽  
Author(s):  
Robail Yasrab

This research presents the idea of a novel fully-Convolutional Neural Network (CNN)-based model for probabilistic pixel-wise segmentation, titled Encoder-decoder-based CNN for Road-Scene Understanding (ECRU). Lately, scene understanding has become an evolving research area, and semantic segmentation is the most recent method for visual recognition. Among vision-based smart systems, the driving assistance system turns out to be a much preferred research topic. The proposed model is an encoder-decoder that performs pixel-wise class predictions. The encoder network is composed of a VGG-19 layer model, while the decoder network uses 16 upsampling and deconvolution units. The encoder of the network has a very flexible architecture that can be altered and trained for any size and resolution of images. The decoder network upsamples and maps the low-resolution encoder’s features. Consequently, there is a substantial reduction in the trainable parameters, as the network recycles the encoder’s pooling indices for pixel-wise classification and segmentation. The proposed model is intended to offer a simplified CNN model with less overhead and higher performance. The network is trained and tested on the famous road scenes dataset CamVid and offers outstanding outcomes in comparison to similar early approaches like FCN and VGG16 in terms of performance vs. trainable parameters.


Sign in / Sign up

Export Citation Format

Share Document