scholarly journals Opportunities and Challenges for Error Control Schemes for Wireless Sensor Networks: A Review

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 504
Author(s):  
Rajan Kadel ◽  
Krishna Paudel ◽  
Deepani B. Guruge ◽  
Sharly J. Halder

Error Correction Schemes (ECSs) significantly contribute to enhancing reliability and energy efficiency of Wireless Sensor Networks (WSNs). This review paper offers an overview of the different types of ECS used in communication systems and a synopsis of the standards for WSN. We also discuss channels and network models for WSN as they are crucial for efficient ECS design and implementation. The literature review conducted on the proposed energy consumption and efficiency models for WSN indicates that existing research work has not considered Single Hop Asymmetric Structure (SHAS) with high performing Error Correcting Codes (ECCs). We present a review on proposed ECS for WSN based on three criteria: Forward Error Correction (FEC), adaptive error correction techniques, and other techniques. Based on our review work, we found that there are limited works on ECS design on a realistic network model i.e., a modified multi-hop WSN model. Finally, we offer future research challenges and opportunities on ECS design and implementation for WSN.

2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Ammar M. A. Abu Znaid ◽  
Mohd. Yamani Idna Idris ◽  
Ainuddin Wahid Abdul Wahab ◽  
Liana Khamis Qabajeh ◽  
Omar Adil Mahdi

The advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages and disadvantages. The similarities and differences of each scheme are investigated on the basis of significant parameters, namely, localization accuracy, computational cost, communication cost, and number of samples. We discuss the challenges and direction of the future research work for each parameter.


2018 ◽  
Vol 2018 ◽  
pp. 1-23 ◽  
Author(s):  
Felicia Engmann ◽  
Ferdinand Apietu Katsriku ◽  
Jamal-Deen Abdulai ◽  
Kofi Sarpong Adu-Manu ◽  
Frank Kataka Banaseka

There has been an increase in research interest in wireless sensor networks (WSNs) as a result of the potential for their widespread use in many different areas like home automation, security, environmental monitoring, and many more. Despite the successes gained, the widespread adoption of WSNs particularly in remote and inaccessible places where their use is most beneficial is hampered by the major challenge of limited energy, being in most instances battery powered. To prolong the lifetime for these energy hungry sensor nodes, energy management schemes have been proposed in the literature to keep the sensor nodes alive making the network more operational and efficient. Currently, emphasis has been placed on energy harvesting, energy transfer, and energy conservation methods as the primary means of maintaining the network lifetime. These energy management techniques are designed to balance the energy in the overall network. The current review presents the state of the art in the energy management schemes, the remaining challenges, and the open issues for future research work.


Author(s):  
John Heidemann ◽  
Milica Stojanovic ◽  
Michele Zorzi

This paper examines the main approaches and challenges in the design and implementation of underwater wireless sensor networks. We summarize key applications and the main phenomena related to acoustic propagation, and discuss how they affect the design and operation of communication systems and networking protocols at various layers. We also provide an overview of communications hardware, testbeds and simulation tools available to the research community.


2014 ◽  
Vol 28 (7) ◽  
pp. 1303-1315 ◽  
Author(s):  
Siguang Chen ◽  
Meng Wu ◽  
Kun Wang ◽  
Zhixin Sun ◽  
Weifeng Lu

Author(s):  
Mark S. Leeson ◽  
Sahil Patel

Underwater Wireless Sensor Networks (UWSNs) are used in applications such as mineral exploration and environmental monitoring, and must offer reliability and energy efficiency. These are related to each other in the sense that the former requires error-correction which in turn requires energy, consuming battery life in an environment where battery replacement and recharging are difficult. This chapter thus addresses the energy efficiency of three suitable error correction methods for UWSNs, namely Automatic Repeat Request (ARQ), Forward Error Correction (FEC) and Network Coding (NC). The performance of the schemes as a function of transmission distance is determined for various packet sizes by using models of attenuation and noise that represent the underwater environment. ARQ offers the lowest efficiency and NC the highest but there is a distance at which FEC becomes the best option rather than NC suggesting a hybrid FEC/NC method.


Author(s):  
Teemu Laukkarinen ◽  
Lasse Määttä ◽  
Jukka Suhonen ◽  
Timo D. Hämäläinen ◽  
Marko Hännikäinen

Resource constrained Wireless Sensor Networks (WSNs) require an automated firmware updating protocol for adding new features or error fixes. Reprogramming nodes manually is often impractical or even impossible. Current update protocols require a large external memory or external WSN transport protocol. This paper presents the design, implementation, and experiments of a Program Image Dissemination Protocol (PIDP) for autonomous WSNs. It is reliable, lightweight and it supports multi-hopping. PIDP does not require external memory, is independent of the WSN implementation, transfers firmware, and reprograms the whole program image. It was implemented on a node platform with an 8-bit microcontroller and a 2.4 GHz radio. Implementation requires 22 bytes of data memory and less than 7 kilobytes of program memory. PIDP updates 178 nodes within 5 hours. One update consumes under 1‰ of the energy of two AA batteries.


Sign in / Sign up

Export Citation Format

Share Document