scholarly journals Sequential Monte Carlo Localization Methods in Mobile Wireless Sensor Networks: A Review

2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Ammar M. A. Abu Znaid ◽  
Mohd. Yamani Idna Idris ◽  
Ainuddin Wahid Abdul Wahab ◽  
Liana Khamis Qabajeh ◽  
Omar Adil Mahdi

The advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages and disadvantages. The similarities and differences of each scheme are investigated on the basis of significant parameters, namely, localization accuracy, computational cost, communication cost, and number of samples. We discuss the challenges and direction of the future research work for each parameter.

2018 ◽  
Vol 2018 ◽  
pp. 1-23 ◽  
Author(s):  
Felicia Engmann ◽  
Ferdinand Apietu Katsriku ◽  
Jamal-Deen Abdulai ◽  
Kofi Sarpong Adu-Manu ◽  
Frank Kataka Banaseka

There has been an increase in research interest in wireless sensor networks (WSNs) as a result of the potential for their widespread use in many different areas like home automation, security, environmental monitoring, and many more. Despite the successes gained, the widespread adoption of WSNs particularly in remote and inaccessible places where their use is most beneficial is hampered by the major challenge of limited energy, being in most instances battery powered. To prolong the lifetime for these energy hungry sensor nodes, energy management schemes have been proposed in the literature to keep the sensor nodes alive making the network more operational and efficient. Currently, emphasis has been placed on energy harvesting, energy transfer, and energy conservation methods as the primary means of maintaining the network lifetime. These energy management techniques are designed to balance the energy in the overall network. The current review presents the state of the art in the energy management schemes, the remaining challenges, and the open issues for future research work.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 504
Author(s):  
Rajan Kadel ◽  
Krishna Paudel ◽  
Deepani B. Guruge ◽  
Sharly J. Halder

Error Correction Schemes (ECSs) significantly contribute to enhancing reliability and energy efficiency of Wireless Sensor Networks (WSNs). This review paper offers an overview of the different types of ECS used in communication systems and a synopsis of the standards for WSN. We also discuss channels and network models for WSN as they are crucial for efficient ECS design and implementation. The literature review conducted on the proposed energy consumption and efficiency models for WSN indicates that existing research work has not considered Single Hop Asymmetric Structure (SHAS) with high performing Error Correcting Codes (ECCs). We present a review on proposed ECS for WSN based on three criteria: Forward Error Correction (FEC), adaptive error correction techniques, and other techniques. Based on our review work, we found that there are limited works on ECS design on a realistic network model i.e., a modified multi-hop WSN model. Finally, we offer future research challenges and opportunities on ECS design and implementation for WSN.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4281
Author(s):  
Ngoc-Thanh Dinh ◽  
Younghan Kim

Wireless sensor network (WSN) studies have been carried out for multiple years. At this stage, many real WSNs have been deployed. Therefore, configuration and updating are critical issues. In this paper, we discuss the issues of configuring and updating a wireless sensor network (WSN). Due to a large number of sensor nodes, in addition to the limited resources of each node, manual configuring turns out to be impossible. Therefore, various auto-configuration approaches have been proposed to address the above challenges. In this survey, we present a comprehensive review of auto-configuration mechanisms with the taxonomy of classifications of the existing studies. For each category, we discuss and compare the advantages and disadvantages of related schemes. Lastly, future works are discussed for the remaining issues in this topic.


2014 ◽  
Vol 977 ◽  
pp. 484-490
Author(s):  
Run Zeng

Wireless Sensor Networks (WSNs) are used in many applications in military and commercial areas. These applications often include the monitoring of sensitive information such as enemy movement on the battlefield or the location of personnel in a building. However, due to the highly resource constrained in sensor nodes, traditional security strategies always can do few with attacks on WSNs. In this Paper, we proposes a study of attacks and security mechanisms in WSNs. First, we summarize the attacks to WSNs and the security requirements based on the TCP\IP networking model, then we present the security solutions to each attack. Along the way we highlight the advantages and disadvantages of various WSN solutions and further compare and evaluate these solutions.


Author(s):  
Ananda Kumar K S ◽  
Balakrishna R

At present day’s wireless sensor networks, obtain a lot consideration to researchers. Maximum number of sensor nodes are scattered that can communicate with all others. Reliable data communication and energy consumption are the mainly significant parameters that are required in wireless sensor networks. Many of MAC protocols have been planned to improve the efficiency more by enhancing the throughput and energy consumption. The majority of the presented medium access control protocols to only make available, reliable data delivery or energy efficiency does not offer together at the same time. In this research work the author proposes a novel approach based on Receiver Centric-MAC is implemented using NS2 simulator. Here, the author focuses on the following parametric measures like - energy consumption, reliability and bandwidth. RC-MAC provides high bandwidth without decreasing energy efficiency. The results show that 0.12% of less energy consumption, reliability improved by 20.86% and bandwidth increased by 27.32% of RC-MAC compared with MAC IEEE 802.11.


Author(s):  
Fernando Gielow ◽  
Michele Nogueira ◽  
Aldri Santos

The use of Wireless Sensor Networks (WSNs) has increased over the past years, supporting applications such as environmental monitoring, security systems, and multimedia streaming. These networks are characterized by a many-to-one traffic pattern. Hence, sensor nodes near to the sink have higher energy consumption, being prone to earlier deaths and failures. Those areas overloaded with high traffic rates are called Hot Spots, and their emergence creates and expands energy holes that compromise network lifetime and data delivery rates, and may result in disconnected areas. This chapter provides an overview of techniques to mitigate Hot Spot impacts, such as the uneven distribution of sensors, routes that balance energy consumption, sink mobility, and the use of unequal clustering. Further, it depicts the approach for achieving mitigation of sink centered Hot Spots. Finally, this chapter presents conclusions and future research perspectives.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ranganathan Mohanasundaram ◽  
Pappampalayam Sanmugam Periasamy

The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.


Author(s):  
Sumit Kumar ◽  
Deepti Singhal ◽  
Garimella Rama Murthy

Scarcity of spectrum is increasing not only in cellular communication but also in wireless sensor networks. Adding cognition to the existing wireless sensor network (WSN) infrastructure has helped. As sensor nodes in WSN are limited with constraints like power, efforts are required to increase the lifetime and other performance measures of the network. In this article, the authors propose Doubly Cognitive WSN, which works by progressively allocating the sensing resources only to the most promising areas of the spectrum and is based on pattern analysis and learning. As the load of sensing resource is reduced significantly, this approach saves the energy of the nodes and reduces the sensing time dramatically. The proposed method can be enhanced by periodic pattern analysis to review the strategy of sensing. Finally the ongoing research work and contribution on cognitive wireless sensor networks in Communication Research Centre (IIIT-H) is discussed.


2010 ◽  
Vol 39 ◽  
pp. 510-516
Author(s):  
Ming Wang ◽  
Shou Jun Bai ◽  
Huan Bao Wang

Most of the proposed algorithms focus on static networks of sensors with either static or mobile anchors, in which the Monte Carlo localization algorithm is a typical one for localizing nodes in a mobile wireless sensor network. But the radio range being all different or inconstant in this algorithm leads to reduce the accuracy of localization and the efficiency of the algorithm itself. In this article, we propose the novel rang-based stochastic Monte Carlo localization algorithm for wireless sensor networks specifically designed with mobility to improve the accuracy of localization by dealing with the different radio ranges of sensors, and being bound to the narrow sampling area. Our simulation experimental results show that the rang-based stochastic Monte Carlo localization algorithm has improved the accuracy and stability of the estimated locations.


2020 ◽  
Vol 8 (5) ◽  
pp. 1049-1054

Wireless Sensor Networks (WSN) are constructed by interconnecting miniature sensor nodes for monitoring the environment uninterrupted. These miniature nodes are having the sensing, processing and communication capability in a smaller scale powered by a battery unit. Proper energy conservation is required for the entire system. Clustering mechanism in WSN advances the lifetime and stability in the network. It achieves data aggregation and reduces the number of data transmission to the Base station (BS). But the Cluster Head (CH) nodes are affected by rapid energy depletion problem due to overload. A CH node spends its energy for receiving data from its member nodes, aggregation and transmission to the BS. In CH election, multiple overlapping factors makes it difficult and inefficient which costs the lifetime of the network. In recent years, Fuzzy Logic is widely used for CH election mechanism for WSN. But the underlying problem of the CHs node continues. In this research work, a new clustering algorithm DHCFL is proposed which elects two CHs for a cluster which shares the load of a conventional CH node. Data reception and aggregation will be done by CH aggregator (CH-A) node and data transmission to the BS will be carried over by CH relay (CH-R) node. Both CH-A and CH-R nodes are elected through fuzzy logic which addresses the uncertainty in the network too. The proposed algorithm DHCFL is compared and tested in different network scenarios with existing clustering algorithms and it is observed that DHCFL outperforms other algorithms in all the network scenarios.


Sign in / Sign up

Export Citation Format

Share Document