scholarly journals The Design and Implementation of a Sensorless Power Tool Based on a Microcontroller

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 921 ◽  
Author(s):  
Tze-Yee Ho ◽  
Cong-Khoi Huynh ◽  
Tsung-Hsien Lin ◽  
Shih-Wei Yang

Power tools are basic working tools used for production and manufacturing in the machinery and mechanical industries. The motor drive plays an important role in power tool applications. The performance of the motor drive will then directly or indirectly affect the quality and precision of the processing metal components. Most of the traditional motor drive control of a brushless direct current (BLDC) motor employs the Hall-effect position sensors to detect the rotor position. However, the installing sensors are prone to degrading the performance due to variations in temperature and the harsh environment. This disadvantage can be overcome with sensorless solutions. Among these sensorless solutions, the zero-crossing point detection of the back electromotive force (BEMF) is popular. Nevertheless, for the 180-degree conduction mode, it is impossible to directly detect the BEMF because of the three terminals of the motor which are conducted at any time for an electrical cycle. Therefore, a novel sensorless circuit approach based on the terminal line to line voltage is proposed in this paper. Moreover, an improved circuit scheme with a Schmitt trigger for sensing the BEMF is also proposed and implemented to obtain the precisely resembling Hall-effect signals. Finally, a prototype of a sensorless BLDC motor drive with a 180-degree conduction mode speed control for power tools is designed and implemented in this paper. The experimental results show that the proposed circuit works properly and validates the feasibility and fidelity of the motor drive system.

Author(s):  
C. Vidhya ◽  
V. Ravikumar ◽  
S. Muralidha

: The objective of this paper is to implement an ac link universal power converter controlled BLDC motor for medical applications. The ac link universal power converter is a soft switched high frequency ac link converter, created using the parallel combination of an inductor and a capacitor. The parallel ac link converter handle the ac voltages and currents with low reactive ratings at the link and offers improved power factor, low power consumption, more efficiency and less weight on comparison with the traditional dc link converter. Because of the high throughput, BLDC motors are preferred widely medical applications. A modulation technique called Space Vector Pulse Width Modulation (SVPWM) is used to generate the three phase power for the BLDC motors from the input DC supply. To validate the proposed system, simulations are performed in MATLAB – Simulink and an experimental prototype is constructed to supplement the simulation results.


Author(s):  
Cuifeng Shen ◽  
Hanhua Yang

Background: A multi-motor synchronous drive control system is widely used in many fields, such as electric vehicle drive, paper making, and printing. Methods: On the basis of the optimized structure of ADRC, a fuzzy first-order active disturbance rejection controller was developed. Double channels compensation of extended state observer was employed to estimate and compensate the total disturbances, and an approximate linearization and deterministic system was obtained. As the parameters of ADRC are adjusted online by a fuzzy controller, the performance of the controller is effectively improved. Results: Based on the SIMATIC S7-300 induction motor control experimental platform, the performances of anti-interference and tracking performance are tested. Conclusion: The actual experimental results indicated that compared with PID control, induction motor drive system controlled by fuzzy ADRC has higher dynamic and static status and following performances and stronger anti-interference abilities.


2007 ◽  
Author(s):  
Tae Uk Jung ◽  
Sung Ho Lee ◽  
Sung Jun Park ◽  
Cheol Ho Yun ◽  
Yu Tao

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Navid Mousavi ◽  
Tohid Rahimi ◽  
Homayoun Meshgin Kelk

In the BLDC motor-drive system, the leakage current from a motor to a ground network and existence of high-frequency components of the DC link current are the most important factors that cause conducting interference. The leakage currents of the motors, flow through common ground, will interfere with other equipment because of the high density of electrical and electronic systems in the spacecraft and aircrafts. Moreover, generally there are common DC buses in the mentioned systems, which aggravate the problem. Function of the electric motor causes appearance of the high-frequency components in the DC link current, which can interfere with other subsystems. In this paper, the analysis of electromagnetic noise and presentation of the proposed method based on the frequency spectrum of the DC link current and the leakage current from the motor to the ground network are done. The proposed method presents a new process based on the filtering method to overcome EMI. To cover the requirement analysis, the Maxwell software is used.


Sign in / Sign up

Export Citation Format

Share Document